Drone-Small-Cell-Assisted Resource Slicing for 5G Uplink Radio Access Networks

Hang Shen, Member, IEEE, Qiang Ye, Member, IEEE, Weihua Zhuang, Fellow, IEEE, Weisen Shi, Student Member, IEEE, Guangwei Bai, and Geng Yang, Member, IEEE

Abstract—Radio resource slicing is critical to customize service provisioning in fifth-generation (5G) uplink radio access networks (RANs). Using drone-small-cells (DSCs) as aerial support for terrestrial base stations can enhance the flexibility for resource provisioning in response to traffic distribution variations. In this paper, we study a multi-DSC-assisted radio resource slicing problem for 5G uplink RANs, with the objective of minimizing the total uplink resource consumption under differentiated quality-of-service (QoS) constraints for both human-type and machine-type communication services. We begin with an interference-aware graph model to formulate the joint DSC three-dimension (3D) placement and device-DSC association problem for uplink radio resource slicing and prove that the proposed problem is NP-hard. A complexity-adjustable problem approximation is presented via screening candidate DSC deployment positions, which incorporates flight height adaptation to balance the uplink communication coverage and resource utilization. A lightweight approximation using a fixed DSC flight altitude is also provided with reduced complexity. For mathematical traceability, the DSC placement and device-DSC associations in each approximation are transformed as a special weight clique problem. An upgraded clique algorithm is then developed to determine how to deploy DSCs for a given number of DSCs. Simulation results demonstrate the proposed scheme’s effectiveness in terms of resource utilization, network coverage, and DSC dispatching cost.

Index Terms—Uplink, radio access networks (RANs), radio resource slicing, drone-small-cell (DSC) deployment, differentiated quality-of-service (QoS).

I. INTRODUCTION

T he fifth-generation (5G) radio access networks (RANs) are envisioned to encompass heterogeneous end devices supporting human-type data communication services and machine-type sensing and intelligent control services for Internet-of-Things (IoT) [1, 2]. Unlike traditional communication networks where downlink data traffic is predominant, a distinct feature of 5G is that a significant portion of the data traffic is carried in the uplink [3]. 5G data services incur more intensive uplink data traffic (e.g., live video and cloud backup) at mobile user devices (MUDs). Besides, 5G IoT applications are realized by supporting an enormous amount of machine-type devices (MTDs) uploading monitored data with stringent QoS requirements [4]. Using small-cells underlying macro base stations (MBSs) is a potential solution to accommodate increasing traffic by exploiting spatial multiplexing [5]. However, this conventional multi-tier terrestrial RAN architecture may lead to low cell resource utilization while incurring extra infrastructure deployment costs due to imbalanced device distribution and network load [6]. Hence, it becomes inevitable to explore flexible network architecture with an agile, scalable, and cost-effective resource slicing framework.

Drones, a.k.a. unmanned aerial vehicles (UAVs), equipped with specific wireless transceivers can form drone-small-cells (DSCs) to assist 5G RANs, which advance in three aspects: 1) DSCs have a high probability of establishing short-distance line-of-sight (LoS) communication links with a high signal-to-noise ratio (SNR) [7]; 2) DSCs behaving as air relays between end devices and terrestrial base stations (BSs) can enhance the coverage of hotspot areas at the MBS edge in response to spatial and temporal traffic load unevenness [4]; 3) Benefiting from low transmit power and flexible maneuverability, DSCs can facilitate spectrum reuse to alleviate resource pressure via effective deployment. Despite the benefits, taking advantage of DSCs faces some challenging issues: 1) Integrating the MBS with DSCs leads to various network coverages and device-BS association patterns, which complicate resource management; 2) Interference fluctuations during the DSC deployment may reduce resource utilization; 3) Due to the unique characteristic of ground-to-DSC (G2D) and DSC-to-macrocell (D2M) channels, it is difficult to determine an appropriate DSC flight altitude to balance the effective cell coverage and resource utilization.

Differentiated services’ coexistence in 5G RANs requires guaranteeing performance isolation, preventing QoS violations, especially when a massive number of MTDs access radio channels [8]. Based on network function virtualization (NFV) [9] and software-defined networking (SDN) [10], radio resource slicing is an essential technological innovation in network resource management, supporting differentiated service deliveries and achieving QoS isolation among services over a common underlying physical infrastructure [6]. With NFV, radio access and processing functions are decoupled from proprietary hardware, realized as software instances, managed centrally by an SDN-enabled virtualization controller [11]. Depending on SDN programmability, the controller determines the amount of radio resources allocated at each BS and further slices the resources into multiple isolated slices of varying
sizes, which are customized to different service types with various characteristics and QoS requirements.

Researchers have conducted many studies on radio resource slicing for terrestrial IoT systems. A downlink radio resource slicing framework is proposed to maximize network utility while providing differentiated QoS guarantees [12]. The downlink spectrum utilization for vehicular networks is improved in [13], where spectrum slicing and transmit power control are jointly considered. Papa et al. investigate a downlink RAN slicing scheme to reduce resource usage while satisfying each slice’s isolation, average rate, and delay requirements [14]. However, compared with the downlink control information dissemination, the performance bottleneck of IoT systems is usually the uplink rather than the downlink since uplink data transmissions are more resource consuming. An energy-efficient uplink resource allocation scheme is proposed in [15] for an MUD/MTD co-existence scenario to maximize bits-per-joule capacity subject to QoS constraints, where MTD gateways are employed for network architectural enhancement.

Considering the high spatio-temporal dynamics of the communication demands, deploying DSCs to assist terrestrial RANs by providing enhanced communication coverages with increased resource utilization has started to gain attention from the research community, where the joint optimization of resource slicing and DSC deployment is a challenging research issue. Most existing works consider downlink RAN scenarios to support mobile data service deliveries. Shi et al. propose a joint multi-DSC trajectory planning and resource allocation scheme to maximize the accumulative network throughput in a high-mobility scenario [16]. Yan et al. study drone access selection and resource allocation problems in drone-assisted communications for IoT and present a hierarchical Stackelberg game framework to balance network performance and service costs [17]. To support more diversified IoT services in a dynamic network environment, Lyu et al. propose an online control framework to slice the spectrum resource of space-air-ground integrated RANs, which maximizes system revenue and guarantees service queueing stabilization [18].

DSC-assisted uplink resource provisioning problems are investigated in literature for accommodating more machine-to-machine communication traffic. A drone-assisted cellular networking solution is proposed to deal with an increasing uplink MTD traffic volume with special traffic characteristics [19]. Wang et al. investigate a resource allocation problem for uplink transmissions in space-air-ground integrated networks, where drones as relays upload the data from end devices to low earth orbit satellites [20]. Ali et al. explore drone-assisted resource allocation to minimize the average queuing delay for traffic offloading in a drone/WiFi co-existence scenario [21]. However, some issues remain unsolved. First, for a given number of DSCs, how to deploy DSCs is non-trivial. Excessive DSC deployment can lead to resource wastage and even network performance degradation, especially in a low network traffic load condition. If the number of DSCs is insufficient, the QoS performance may not be satisfied. Second, most existing works omit the resource consumption of D2M communications and ignore the impact of DSC flying height on the effective cell coverage with proper device-BS association patterns. Third, radio resource slicing and sharing for finer-grained QoS differentiation, considering the distinctive drone channel and diversified data traffic features, need further investigation.

In this paper, we study a multi-DSC-assisted uplink radio resource slicing problem. By considering where and how many DSCs are placed, we propose a joint DSC placement and device association scheme, focusing on minimizing the total amount of consumed resources while satisfying differentiated QoS requirements of MUDs and MTDs. The main contributions are threefold:

- An interference-aware graph model is established to characterize multi-DSC three-dimension (3D) placement. Based on the model, we mathematically formulate the joint optimization problem of DSC placement and device-BS association for uplink resource slicing with DSC number and differentiated QoS constraints. We prove that the proposed problem is NP-hard and analyze the impact of DSC deployment on resource consumption;
- By dynamically selecting candidate DSC deployment positions based on their performance gains, we present a complexity-adjustable problem approximation incorporating an adaptive control policy for DSC flight altitude to balance uplink coverage and resource utilization. We also provide a lightweight approximation using the flight altitude that maximizes the communication coverages.
- In each approximation, the joint problem is transformed into a special weight clique problem, and a performance-aware clique algorithm is developed for problem-solving. Simulation results are presented to compare the proposed scheme’s performance with various baseline methods for low and high device density cases, demonstrating that the proposed solution is superior to existing approaches.

The rest of this paper is organized as follows. The system model under consideration is presented in Section II. The problem formulation and analysis are given in Section III, and problem approximation and algorithm design are given in Section IV. We conduct performance evaluation in Section V, followed by the concluding remarks in Section VI. The main notations and variables are listed in Table I. Proof of the theorems and corollaries are given in appendices.

II. SYSTEM MODEL

Consider a two-tier uplink heterogeneous RAN where a single MBS is deployed at the center of the network underlaid by multiple DSCs, as illustrated in Fig. 1. The MBS with high transmit power supports wide-area communication coverage. The DSCs with low transmit power and small coverage range are placed in the MBS’s 3D coverage space. Due to the limited DSC coverage, end devices are associated with the MBS in most cases. When covered by a DSC, end devices can select to connect to either the homing DSC or the MBS, depending on network conditions. All packets generated by end devices are uploaded to reach the MBS via wireless propagation channels. There are three types of uplinks: ground-to-MBS (G2M) links, G2D links, and D2M links. A G2M link is a connection between an end device and the MBS, while a G2D link
Symbols Definition	Symbols Definition
\(a_{i,k}\) Association indicator for device \(i\) to a DSC at \(v_{j,k}\) | \(v_{j,k}\) Candidate DSC deployment position \((x_{j,k}, y_{j,k}, z_{j,k})\)
\(g_{i,m}\) Channel gain from device \(i\) to the MBS | \(w_{j,k}\) weight of \(v_{j,k}\)
\(g_{i,j,k}\) Channel gain from device \(i\) to the DSC at \(v_{j,k}\) | \(W_{1}/W_{2}\) Resource slice for the MBS and each DSC
\(g_{j,m}\) Channel gain from a DSC at \(v_{j,k}\) to the MBS | \(\lambda_{1}/\lambda_{2}\) set of MUDs/MTDs
\(h_{i,j}\) Horizontal distance between device \(i\) and \(v_{j,k}\) | \(Y_{i}/Y_{2}\) Minimum rate requirement of an MUD/MTD
\(h_{i,m}\) Horizontal distance between device \(i\) and the MBS | \(z_{(\text{max})}\) Flight height that maximizes effective coverage
\(H_{i}/H_{j}\) Set/Number of candidate DSC height indexes | \(\alpha\) Number of available DSCs
\(I_{j,k}\) Set/Number of devices covered by a DSC at \(v_{j,k}\) | \(\beta_{j,k}\) Performance gain for a DSC at \(v_{j,k}\)
\(I_{j,k,1}/I_{j,k,2}\) Set/Number of MUDs covered by a DSC at \(v_{j,k}\) | \(\delta\) Amount of resources for creating \(W_{2}\)
\(I_{j,k,1}/I_{j,k,2}\) Set/Number of MTDs covered by a DSC at \(v_{j,k}\) | \(\delta_{j,k}\) Resource consumption of a DSC at \(v_{j,k}\) from \(W_{2}\)
\(L_{a}/L_{d}\) MTD/MUD packet size | \(\delta_{j,k,1}/\delta_{j,k,2}\) Resource consumption of MUDs/MTDs from \(\delta_{j,k}\)
\(N/N\) Set/Number of x-y coordinate position indexes | \(\lambda_{u}/\lambda_{d}\) Poisson/Periodic packet arrival rate
\(p_{i,j,k}\) Transmit power on device \(i\) the DSC at \(v_{j,k}\) | \(\xi\) LoS probability threshold for G2D links
\(Q/Q\) Clique (DSC deployment plan)/Cardinality of \(Q\) | \(\epsilon\) Bound of statistical delay violation probability
\(r_{i,m}\) Spectrum efficiency at the MBS from device \(i\) | \(\mu\) Total uplink resource consumption
\(r_{i,j,k}\) Spectrum efficiency at \(v_{j,k}\) from device \(i\) | \(\sigma^{2}\) Average background noise power
\(r_{j,k}\) Spectral efficiency at the MBS from a DSC at \(v_{j,k}\) | \(\psi\) Interference distance threshold
\(R_{j,k}\) Effective coverage radius of a DSC at altitude \(z_{j,k}\) | \(\omega\) Amount of resources for creating \(W_{1}\)
\(R_{(\text{max})}\) Maximum effective coverage radius of a DSC | \(\omega_{1}/\omega_{2}\) Resource consumption of MUDs/MTDs from \(\omega\)

Fig. 1. Radio resource slicing and splitting in a multi-DSC-assisted RAN.
connects an end device and a DSC. Data received by a DSC is relayed through a D2M link to the MBS.

There are two types of end devices, MTDs and MUDs, distributed in the network with differentiated QoS requirements. The former has delay-sensitive machine-type traffic requiring high transmission reliability, and the latter generates data traffic requiring high throughput. Consider MUDs with low-to-moderate mobility and MTDs more or less stationary [22]. Denote MUD and MTD sets as \(X_1\) and \(X_2\). The position coordinates of end device \(i\) in \(X_1 \cup X_2\) and the MBS are denoted as \((x_i, y_i, 0)\) and \((x_m, y_m, z_m)\). Let \(v_{j,k} = (x_j, y_j, z_j,k)\) represent a candidate 3D deployment position for each DSC, where \(j \in N\) is the index of the projection position on the \(x\)-\(y\) coordinate plane (i.e., \((x_j, y_j, 0))\), \(k \in H_j\) is the height index for \(j\), and \(N\) and \(H_j\) denote the index sets with \(N\) and \(H_j\) being their cardinalities.

A. Communication Models

Consider a general path-loss model for G2M links, in which the signal power decays at a rate of \(\left(\sqrt{\frac{h_{i,m}^2 + z_m^2}{h_{i,m}^2}}\right)^\gamma\) over the propagation distance \(\sqrt{h_{i,m}^2 + z_m^2}\), \(\gamma\) being the path-loss exponent, and \(h_{i,m} = \sqrt{(x_i - x_m)^2 + (y_i - y_m)^2}\) being the horizontal distance between device \(i\) and the MBS. Denote \(p_i\) and \(\sigma^2\) as the transmit power of end device \(i\) and average received background noise power, respectively. Based on Shannon’s capacity formula, the spectral efficiency from end device \(i\) destined for the MBS is

\[
r_{i,m} = \log_2 \left(1 + \frac{p_i g_{i,m}}{\sigma^2}\right) \tag{1}
\]

where \(g_{i,m} = 10^{-\frac{10}{10} \log_{10}\left(\frac{10^{10}}{h_{i,m}^2 + z_m^2}\right)}\) is the channel gain from end device \(i\) to the MBS.

Different from G2M links, the channel characteristics of the G2D links rely on DSC flight altitude, elevation angle, and type of propagation environment with different LoS or non-line-of-sight (NLoS) occurrence probabilities [23]. Based on the aerial channel model proposed in [24], the LoS probability of the G2D link from device \(i\) to a DSC at \(v_{j,k}\) is

\[
F_{\text{LoS}}(z_{j,k}, h_{i,j}) = \frac{1}{1 + \exp(-b \arctan(z_{j,k} / h_{i,j}) - o)} \tag{2}
\]

where \(h_{i,j} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}\) is the horizontal distance between device \(i\) and \(v_{j,k}\), \(o\) and \(b\) are constant related to the urban environment. Based on [25], the additional path-loss (dB) of the G2D link from device \(i\) to \(v_{j,k}\) for LoS reception, denoted by \(\eta_{\text{LoS}}(z_{j,k}, h_{i,j})\), and that for non-LoS reception, denoted by \(\eta_{\text{NLoS}}(z_{j,k}, h_{i,j})\), are given by

\[
\begin{align*}
\eta_{\text{LoS}}(z_{j,k}, h_{i,j}) &= \kappa_{\text{LoS}} + \rho_{\text{LoS}} \log_{10} \sqrt{h_{i,j}^2 + z_{j,k}^2} \tag{3} \\
\eta_{\text{NLoS}}(z_{j,k}, h_{i,j}) &= \kappa_{\text{NLoS}} + \rho_{\text{NLoS}} \log_{10} \sqrt{h_{i,j}^2 + z_{j,k}^2}
\end{align*}
\]

where \(\kappa_{\text{LoS}}\) (\(\kappa_{\text{NLoS}}\)) is path-loss at a reference distance under an LoS (NLoS) connection, and \(\rho_{\text{LoS}}\) (\(\rho_{\text{NLoS}}\)) is the path-loss exponent under an LoS (NLoS) connection. The free space path-loss from device \(i\) to \(v_{j,k}\) is [25]

\[
F_{\text{PL}}(z_{j,k}, h_{i,j}) = 20 \log_{10} \left(\frac{4\pi f}{c}\right) \sqrt{\frac{z_{j,k}^2 + h_{i,j}^2}{c}} \tag{4}
\]

where \(f\) is the carrier frequency in Hz, \(c\) is the speed of light in m/s. Based on (2), (3), and (4), the average path-loss is given by [26]

\[
\phi(z_{j,k}, h_{i,j}) = F_{\text{PL}}(z_{j,k}, h_{i,j}) + F_{\text{LoS}}(z_{j,k}, h_{i,j}) \eta_{\text{LoS}}(z_{j,k}, h_{i,j})
\]

and

\[
\phi(z_{j,k}, h_{i,j}) = F_{\text{PL}}(z_{j,k}, h_{i,j}) + (1 - F_{\text{LoS}}(z_{j,k}, h_{i,j})) \eta_{\text{NLoS}}(z_{j,k}, h_{i,j})
\]

Denote \(Q\) as the selected DSC deployment position set and \(R_{j,k}\) as the effective coverage radius of a DSC hovering at \(v_{j,k}\). The DSC experiences interference due to simultaneous uplink transmissions to other DSCs, whose deployment positions are contained in \(\Theta_{j,k}(\psi) = \{v_{j,k'} \in Q \setminus \{v_{j,k}\} | h_{j,k'} - (R_{j,k} + R_{j,k'}) < \psi\}\), where \(\psi\) represents an interference distance threshold [27] and \(h_{j,k'} = \sqrt{(x_j - x_{j,k'})^2 + (y_j - y_{j,k'})^2}\) is the horizontal distance between \(v_{j,k}\) and \(v_{j,k'}\). Thus, the spectral efficiency of the DSC at \(v_{j,k}\) from end device \(i\), similar to [28], is expressed as

\[
r_{i,j,k} = \log_2 \left(1 + \frac{p_i g_{i,j,k}}{\sum_{v_{j,k'} \in \Theta_{j,k}(\psi)} p_i g_{i,j,k'} + \sigma^2}\right) \tag{6}
\]

where \(g_{i,j,k} = 10^{-\frac{\phi(z_{j,k}, h_{i,j})}{10}}\) represents the channel gain from device \(i\) to the DSC at \(v_{j,k}\).

Normally, the height of a DSC is higher than that of the MBS, and the link from the DSC to the MBS belongs to an LoS connection. Thus, the average path-loss of the D2M link from a DSC at \(v_{j,k}\) to the MBS is expressed as

\[
\eta_{\text{LoS}}(z_{j,k} - z_m, h_{j,m}) = \kappa_{\text{LoS}} + \rho_{\text{LoS}} \log_{10} \left(\sqrt{(h_{j,m})^2 + (z_{j,k} - z_m)^2}\right) \tag{7}
\]

If the traffic is delivered via a DSC at \(v_{j,k}\), the spectral efficiency at the MBS is calculated as

\[
r_{j,k,m} = \log_2 \left(1 + \frac{p_j g_{j,k,m}}{\sigma^2}\right) \tag{8}
\]

where \(g_{j,k,m} = 10^{-\frac{\eta_{\text{LoS}}(z_{j,k} - z_m, h_{j,m})}{10}}\) is the channel gain from the DSC to the MBS.

B. DSC Uplink Coverage Model

The effective uplink coverage radius of a DSC is constrained by both the LoS probability and the free space path-loss, which satisfies [29, 30]

\[
\begin{align*}
F_{\text{LoS}}(z_{j,k}, h_{i,j}) &\geq \xi \\
F_{\text{PL}}(z_{j,k}, h_{i,j}) &\leq \chi
\end{align*}
\]

where \(\xi\) is the LoS probability threshold and \(\chi\) is the free space path-loss threshold. The values of these two thresholds are determined by the minimum signal-to-noise ratio for signal
decoding of DSCs. It is assumed that all DSCs have the same sensitivity. Substituting (2) and (4) into (9), we have

\[
\begin{align*}
\frac{z_{j,k}}{(0 - \frac{1}{b} \ln 1 - \frac{1}{\omega^2}}) = J_{\text{LoS}}(z_{j,k}) \\
\frac{z_{j,k}}{(0 - \frac{1}{b} \ln 1 - \frac{1}{\omega^2}}) = J_{\text{PL}}(z_{j,k})
\end{align*}
\]

and \(z_{j,k} \in [0, 10^\frac{\pi f}{4\pi f}]\). If the hovering height of a DSC is \(z_{j,k}\), the effective coverage radius of the DSC is determined as

\[
R_{j,k} = \min\{J_{\text{LoS}}(z_{j,k}), J_{\text{PL}}(z_{j,k})\}. \tag{11}
\]

If \(h_{i,j} \leq R_{j,k}\), end device \(i\) is under the effective coverage of the DSC at \(v_{j,k}\).

Let \(z\) be a continuous variable with respect to DSC flight height. With an increase of \(z\), \(J_{\text{LoS}}(z)\) monotonically increases and \(J_{\text{PL}}(z)\) monotonically decreases. Accordingly, the flight height that maximizes the effective coverage radius must be at the unique intersection of \(J_{\text{LoS}}(z)\) and \(J_{\text{PL}}(z)\), obtained when \(J_{\text{LoS}}(z) = J_{\text{PL}}(z)\), given by

\[
z^{(\text{max})} = z^* = \arg(J_{\text{LoS}}(z) = J_{\text{PL}}(z)) = \frac{c10^\pi}{4\pi f} \tan \left(0 - \frac{1}{b} \ln 1 - \frac{1}{\omega^2}\right)^2. \tag{12}
\]

Due to the different monotonicity of \(J_{\text{LoS}}(\cdot)\) and \(J_{\text{PL}}(\cdot)\), the largest effective coverage radius when the DSC is at altitude \(z^{(\text{max})}\) is expressed as

\[
R^{(\text{max})} = J_{\text{LoS}}(z^{(\text{max})}) = J_{\text{PL}}(z^{(\text{max})}). \tag{13}
\]

C. Traffic Model

An uplink transmission queue is considered at each end device. The link-layer packetized traffic [31] is used to model packet arrivals of human-type and machine-type traffic for QoS characterization. It is assumed that human-type packets arrive at the queue in an MUD periodically with an average rate of \(\lambda_d\) packet/s and the size of \(L_d\) bits. The MUD’s uplink transmission throughput requirement can be met if the allocated transmission rate of each link reaches \(Y_1 = \lambda_d L_d\). Since machine-type packets arrive at an MTD in an event-driven manner with a low packet arrival rate and a small packet size [22], the transmission delay can only be satisfied in a probabilistic way. As suggested in [32], machine-type packet arrivals at the queue in an MTD are modeled as a Poisson process with an average rate of \(\lambda_m\) packet/s and the size of \(L_m\) bits. Due to the randomness of packet arrival, the effective bandwidth theory is applied for each MTD to calculate the minimum transmission rate, \(Y_2\), to provide a probabilistic guarantee of a packet transmission delay bound [12, 15, 31]. The effective bandwidth for a machine-type traffic source, with a QoS exponent, \(\tau\), is derived as [33]

\[
B(\tau) = \frac{\lambda_m (\exp(\tau) - 1)}{\tau}. \tag{14}
\]

Based on the large deviation theory [34], the probability of uplink transmission delay, \(D\), for an MTD packet on the G2D/G2M/D2M link exceeding a delay bound, \(D^{(\text{max})}\), is expressed as

\[
\Pr(D \geq D^{(\text{max})}) \approx \exp\left(-\frac{Y_2 \tau D^{(\text{max})}}{L_a}\right) \tag{15}
\]

where \(\frac{Y_2}{L_a}\) is the achievable rate at a target BS. Let \(\varepsilon\) denote a delay bound violation probability threshold, which is set to

\[
Y_2 = \frac{L_a \log \varepsilon}{D^{(\text{max})}\tau} \tag{16}
\]

where \(\tau\) is obtained when \(Y_2 = B(\tau)\), calculated as

\[
\tau = \log(1 - \frac{L_a \log \varepsilon}{\lambda_m D^{(\text{max})}}). \tag{17}
\]

D. Resource Slicing Framework

Through SDN and NFV, the physical radio resources from heterogeneous BSs are abstracted as a centralized virtual radio resource pool. As shown in Fig. 1, an SDN/NFV-enabled controller, connected to the MBS, centrally manages the slicing of the virtualized uplink radio resources, the amount of which is denoted by \(\mu\), among all the heterogeneous BSs under consideration to further create resource slices reserved to different services for customized QoS provisioning. The amount of radio resources allocated to each slice needs to be adjusted in response to both network conditions (including end device and DSC locations, device-DSC association patterns, and interference levels) and service-level characteristics (i.e., traffic statistics and QoS constraints). Two levels of resource partitioning are considered.

At the network level, the determined bandwidth resources are physically partitioned into two bandwidth slices \(W_1\) and \(W_2\), the amounts of which are denoted as \(\omega\) and \(\delta\) (with \(\mu = \omega + \delta\)). They are mutually orthogonal to avoid inter-slice interference. The \(W_1\) slice is reserved to the MBS to support G2M and D2M communications, where DSCs in D2M communications can also be treated as gateways/relays associated with the MBS from end devices. The \(W_2\) slice is reused by each DSC for G2D communications by keeping interference distances among the DSCs. For a DSC placed at \(v_{j,k}\), the actual amount of resources allocated from \(W_2\), denoted by \(\delta_{j,k}\), cannot be larger than \(\delta\).

At the service level, the slice allocated to each BS is further partitioned into two sub-slices for human-type and machine-type communication services. The amounts of resources split from \(\omega\) for the two types of services are denoted as \(\omega_1\) and \(\omega_2\) (with \(\omega = \sum_{\omega \in \{1, 2\}} \omega_s\)). Similarly, the amounts of resources separated from \(\delta_{j,k}\) are denoted as \(\delta_{j,k,1}\) and \(\delta_{j,k,2}\) (with \(\delta_{j,k} = \sum_{s \in \{1, 2\}} \delta_{j,k,s}\)).

III. OPTIMAL UPLINK RESOURCE SLICING

In this section, a graph model is presented to characterize the multi-DSC placement. Based on the model, we mathematically formulate the optimal resource slicing problem.
exists an edge expressed as a candidate DSC deployment position. The vertex set is shown in Fig. 2(a) consists of three vertices deployed at the vertex. Taking the circle surrounding \(v \) of slice \(A \). Graph Model for Multi-DSC Placement

Fig. 2. Comparison of different interference graphs.

A. Graph Model for Multi-DSC Placement

The position variation (involving plane projection and flight altitude) of any DSC may lead to the interference fluctuation of slice \(W_2 \) and affect the placement of other DSCs. We construct an interference graph model to coordinate multi-DSC 3D placement for interference control.

Let \(G(V, E) \) denote a graph, in which each vertex represents a candidate DSC deployment position. The vertex set is expressed as

\[
V(G) = \{v_{j,k} | j \in \mathcal{N}, k \in \mathcal{H}_j\},
\]

Denote \(\mathcal{I}_{j,k,1} = \{i \in \mathcal{X}_1 | h_{i,j} \leq R_{j,k}\} \) and \(\mathcal{I}_{j,k,2} = \{i \in \mathcal{X}_2 | h_{i,j} \leq R_{j,k}\} \) as the groups of MUDs and MTDs under the coverage of a DSC at \(v_{j,k} \). Let \(\mathcal{I}_{j,k} = \mathcal{I}_{j,k,1} \cup \mathcal{I}_{j,k,2} \).

From (6), if the distance between any two DSCs at \(v_{j,k} \) and \(v_{j',k'} \) satisfies

\[
h_{j,j'} - (R_{j,k} + R_{j',k'}) \geq \psi
\]

the interference of each DSC from the uplink transmission to other DSCs can be controlled. Under (19), the distance between devices \(i \) in \(\mathcal{I}_{j,k} \) and \(i' \) in \(\mathcal{I}_{j',k'} \) must be larger than \(\psi \). For any two different vertices \((v_{j,k}, v_{j',k'}) \subseteq V(G) \), there exists an edge \((v_{j,k}, v_{j',k'}) \) if (19) is met. The edge set of the graph is expressed as

\[
E(G) = \{(v_{j,k}, v_{j',k'}) | h_{j,j'} - (R_{j,k} + R_{j',k'}) \geq \psi, v_{j,k}, v_{j',k'} \in V(G)\}.
\]

An example is used to illustrate the graph model. The graph shown in Fig. 2(a) consists of three vertices \(v_{1,1}, v_{2,1}, v_{3,1}, \) and \(v_{4,1} \). Each circle represents the effective coverage area of a DSC deployed at the vertex. Taking the circle surrounding \(v_{1,1} \) as an example, the radius of the circle is \(R_{1,1} \). It is assumed that \(h_{1,2} - (R_{1,1} + R_{2,1}) = h_{2,3} - (R_{2,1} + R_{3,1}) = h_{3,4} - (R_{3,1} + R_{4,1}) = h_{4,1} - (R_{4,1} + R_{1,1}) = \psi \) and \(h_{1,3} - (R_{1,1} + R_{3,1}) = h_{2,4} - (R_{2,1} + R_{2,1}) \geq \psi \). A connecting edge exists between each pair of vertices because each pair satisfies (19).

Assuming that \(v_{1,1} \) is replaced by \(v_{1,2} \) and \(R_{1,1} < R_{2,1} \), we have \(h_{1,2} - (R_{1,2} + R_{2,1}) = h_{2,3} - (R_{1,2} + R_{3,1}) = h_{1,4} - (R_{1,2} + R_{1,1}) = \psi \). Under (19), there is no edge existed between \(v_{1,2} \) and \(v_{2,1} \), and \(v_{1,2} \) and \(v_{4,1} \), as shown in Fig. 2(b).

Based on the graph model, we express the DSC deployment position set \(Q = \{v_{j,k_1}, v_{j_2,k_2}, \ldots, v_{j_q,k_q}\} \), as a clique (complete subgraph) in \(G(V, E) \), representing a vertex subset in which every two vertices are adjacent, with \(Q \) being the cardinality of \(Q \). For example, Fig. 2(a) has four cliques with three vertices, i.e., \(\{v_{1,1}, v_{2,1}, v_{3,1}\}, \{v_{1,1}, v_{3,1}, v_{4,1}\}, \{v_{1,2}, v_{2,1}, v_{4,1}\}, \) and \(\{v_{2,1}, v_{3,1}, v_{4,1}\} \). While Fig. 2(b) contains a single clique with three vertices, i.e., \(\{v_{2,1}, v_{3,1}, v_{4,1}\} \).

We use \(q_{j,k} \) to indicate whether \(v_{j,k} \) is included in \(Q \), given by

\[
q_{j,k} = \begin{cases}
1, & \text{if } v_{j,k} \in Q \\
0, & \text{otherwise.}
\end{cases}
\]

We choose \(v_{j,k} \) to deploy a DSC if and only if \(q_{j,k} = 1 \). Each clique corresponds to a candidate DSC placement plan.

B. Resource Partitioning

Resource partitioning depends on DSC placement and device association selection. Let indicator variable \(a_{i,j,k} \) represent the association pattern between device \(i \) in \(\mathcal{I}_{i,j,k} \) and the DSC placed at \(v_{j,k} \). If device \(i \) establishes a connection with the DSC, \(a_{i,j,k} \) is set to 1; otherwise, set to 0. If device \(i \) is associated with the MBS, the amount of resources required by the device is \(\frac{Y_i}{r_{i,m}} \). If \(a_{i,j,k} = 1 \), the amount of resources required by the device to submit data through the G2D link and the D2M link are \(\frac{Y_i}{r_{j,k,m}} \) and \(\frac{Y_i}{r_{j,k,m}} \), respectively.

For the quantification of \(\omega \), we divide the end devices in \(\mathcal{X}_1 \) and \(\mathcal{X}_2 \) into two groups, located outside and inside DSC coverage areas. In the former case, since the corresponding end devices can only connect to the MBS, the amount of resources required from \(\omega \) is calculated as

\[
\sum_{s \in \{1,2\}} \sum_{i \in \mathcal{I}_{s,j,k}} \frac{Y_i}{r_{i,m}} - \sum_{s \in \{1,2\}} q_{j,k} \sum_{s \in \{1,2\}} \sum_{i \in \mathcal{I}_{s,j,k}} \frac{Y_i}{r_{i,m}}.
\]

In the latter case, the association pattern for device \(i \) in \(\mathcal{I}_{s,j,k} \) is determined by \(\sum_{v_{j,k} \in V(G)} q_{j,k} a_{i,j,k} \), which equals to 0 if it is not associated with the MBS and 1 if it connects with a DSC. The amount of resources required by the end devices associated with the MBS for G2M communications is calculated as

\[
\sum_{v_{j,k} \in V(G)} q_{j,k} \sum_{s \in \{1,2\}} \sum_{i \in \mathcal{I}_{s,j,k}} (1 - a_{i,j,k}) \frac{Y_i}{r_{i,m}}
\]

and that consumed by the end devices associated with DSCs for D2M communications is calculated as

\[
\sum_{v_{j,k} \in V(G)} q_{j,k} \sum_{s \in \{1,2\}} \sum_{i \in \mathcal{I}_{s,j,k}} a_{i,j,k} \frac{Y_i}{r_{j,k,m}}.
\]

Summing (22), (23), and (24), we have

\[
\omega = \sum_{s \in \{1,2\}} \omega_s + \sum_{s \in \{1,2\}} \sum_{i \in \mathcal{X}_s} \frac{Y_i}{r_{i,m}} + \sum_{v_{j,k} \in V(G)} q_{j,k} \sum_{s \in \{1,2\}} \sum_{i \in \mathcal{I}_{s,j,k}} a_{i,j,k} \left(\frac{Y_i}{r_{j,k,m}} - \frac{Y_i}{r_{i,m}} \right).
\]

For a DSC is deployed at \(v_{j,k} \) (\(q_{j,k} = 1 \)), we have

\[
\delta_{j,k,s} = \sum_{i \in \mathcal{I}_{s,j,k}} a_{i,j,k} \frac{Y_i}{r_{j,k,m}}, s \in \{1,2\}.
\]

Since slice \(W_2 \) is reused among DSCs, the amount of resources allocated to this slice is determined by the DSC consuming
the largest amount of resources. The position of such DSC is contained in \(Q \), whose indexes are expressed as
\[
j^*, k^* = \arg \max_{j, k \in Q} \sum_{s \in \{1, 2\}} \sum_{i \in I_{j, k, s}} a_{i,j,k} \frac{Y_s}{r_{i,j,k}}. \tag{27}
\]
Combining (26) and (27), we have
\[
\delta = \sum_{s \in \{1, 2\}} \frac{\delta_{j^*, k^*, s}}{2} = \sum_{s \in \{1, 2\}} \sum_{i \in I_{j^*, k^*, s}} a_{i,j^*, k^*} \frac{Y_s}{r_{i,j^*, k^*}}. \tag{28}
\]

C. Problem Formulation

In the proposed resource slicing framework, a challenging issue is to determine where and how many DSCs are placed, as well as device-BS association patterns to minimize the total uplink resource consumption, which is the summation of (25) and (28), expressed as
\[
\mu = \omega + \delta = \sum_{s \in \{1, 2\}} \sum_{i \in X_s} \frac{Y_s}{r_{i,m}} + \sum_{v_{j,k} \in V(G)} q_{j,k} w_{j,k}. \tag{29}
\]
where
\[
w_{j,k} = \begin{cases} \sum_{i \in I_{j,k}} a_{i,j,k} \left(\frac{Y_s}{r_{i,j,k}} + \frac{Y_s}{r_{j,k,m}} - \frac{Y_s}{r_{i,m}} \right), & \text{if } v_{j,k} = v_{j^*, k^*}, \\
\sum_{i \in I_{j,k}} a_{i,j,k} \left(\frac{Y_s}{r_{j,k,m}} - \frac{Y_s}{r_{i,m}} \right), & \text{if } v_{j,k} \in V(G) \setminus \{v_{j^*, k^*}\}. \end{cases} \tag{30}
\]

Given DSC deployment plan \(Q \), the objective of Problem \(P1 \) can be transformed as
\[
\varphi(Q) = \sum_{v_{j,k} \in Q} w_{j,k}. \tag{32}
\]
The lower bound of (32) is expressed as
\[
\varphi^{(\text{min})}(Q) = \sum_{v_{j,k} \in Q} w_{j,k}^{(\text{min})}. \tag{33}
\]
where \(w_{j,k}^{(\text{min})} = \min_{s \in \{1, 2\}, i \in I_{j,k,s}} a_{i,j,k} \frac{Y_s}{r_{i,j,k}} \) represents the lower bound of \(w_{j,k} \). Then, we have Proposition 1.

Proposition 1: Under (34), we have \(\varphi(Q) = \varphi^{(\text{min})}(Q) \).
The Proof of Proposition 1 is given in Appendix A. Proposition 1 implies that (34) is determined by \(Q \). Further, we have Proposition 2.

Proposition 2: If \(Q' \subseteq Q \), then \(\varphi^{(\text{min})}(Q') \leq \varphi^{(\text{min})}(Q) \).
The Proof of Proposition 2 is given in Appendix B. Proposition 2 indicates that under (34), supplementing new DSCs (if possible) will not increase resource consumption. In the case of \(Q = \emptyset \), the resource consumption, calculated as \(\varphi(Q) = \sum_{v_{j,k} \in \{1, 2\}} \frac{Y_s}{r_{i,m}} \), is at its maximum.

Theorem 1: \(P1 \) is NP-hard.

The Proof of Theorem 1 is given in Appendix C. From Theorem 1, the computational complexity of finding the optimal solution of \(P1 \) exponentially increases with \(|V(G)| = \sum_{j \in J} H_j \). Although the optimal solution can be obtained by solving the given integer program, the computational complexity becomes high when \(|V(G)| \) is large. Hence, it is necessary to design an approximation mechanism for a suboptimal solution.

IV. CLIQUE BASED SOLUTION

We first explore vertex filtering for complexity-adjustable multi-DSC deployment. Then, we establish problem approximations for DSC flight height adaptive and fixed cases. Finally, an upgraded clique algorithm is proposed for problem-solving.

A. Flight Altitude Selection

The association indicator in (34) is approximated as in (35) to reduce complexity.
\[
\tilde{\alpha}_{i,j,k} = \begin{cases} 1, & \text{if } \frac{1}{r_{i,j,k}} + \frac{1}{r_{j,k,m}} \leq \frac{1}{r_{i,m}} \\
0, & \text{otherwise}. \end{cases} \tag{35}
\]
If a DSC is deployed at \(v_{j,k} \), the performance gain obtained by the DSC is defined as
\[
\beta_{j,k} = \sum_{i \in I_{j,k}} \left(\frac{1}{r_{i,m}} - \left(\frac{1}{r_{i,j,k}} + \frac{1}{r_{j,k,m}} \right) \right) \tag{36}
\]
which reflects the amount of resources required for devices associated with the DSC at \(v_{j,k} \) to achieve the same transmission rate. The larger the value of \(\beta_{j,k} \), the higher the performance.
\[a_{i,j,k} = \begin{cases} 1, & \left(\frac{1}{r_{i,j,k}} + \frac{1}{r_{j,k,m}} \leq \frac{1}{r_{i,m}} \right) \text{if } v_{j,k} = v_{j^*,k^*} \\ 0, & \text{otherwise} \end{cases} \]

on (12) and (13), we have \(z_{\text{max}}^{(\text{max})} = 77.4 \text{m} \) and \(R_{\text{max}}^{(\text{max})} = 175.9 \text{m} \), respectively. Given the environmental parameters, the DSC’s effective coverage is determined by flying height.

Regarding the DSC flight height, we can summarize from Fig. 3 and Fig. 4 that 1) when a DSC associates with an end device, the DSC’s flight height that minimizes the end device’s resource consumption is unique, and 2) the DSC’s flight height that maximizes effective coverage is also unique. Inspired by the properties, we eliminate suboptimal flight height indexes by Theorems 2 and 3. It is assumed that all indexes are sorted in an ascending order of heights in the theorems.

Theorem 2: If \(R_{j,k_{l-1}} < R_{j,k_l} \) and \(z_{j,k_l} \leq \min_{z_j \in z_{j,k_{l-1}} \cup z_{j,k_l}} z_{j,k_l}^* \), then \(k_l^* \neq k_{l-1} \).

The Proof of Theorem 2 is given in Appendix D.

Theorem 3: If \(R_{j,k_{l-1}} > R_{j,k_l} \) and \(z_{j,k_{l-1}} \geq \max_{z_j \in z_{j,k_{l-1}} \cup z_{j,k_l}} z_{j,k_l}^* \), then \(k_l^* \not\in \{ k_l, k_{l+1}, ..., k_{l+1} \} \).

Proof of Theorem 3 is given in Appendix E.

A fast vertex screening algorithm, summarized in Algorithm 1, is developed to preclude suboptimal height indexes from \(H_j \). Initially, \(l \in [1, H_j] \) is set to be 2. For a given \(l \), \(k_{l-1} \) is removed (line 3) if \(k_l \) satisfies the condition of Theorem 2 (line 2); \(k_l \) and its subsequent are excluded (line 5) if \(k_l \) meets the condition of Theorem 3 (line 4).

Algorithm 1: filter_altitude \((H_j)\)

1. for \(l \leftarrow 2 \) to \(H_j \) do
2. if \(R_{j,k_{l-1}} < R_{j,k_l} \) & \& \(z_{j,k_l} \leq \min_{z_j \in z_{j,k_{l-1}} \cup z_{j,k_l}} z_{j,k_l}^* \) then
3. \(H_j \leftarrow H_j \setminus \{ k_{l-1} \} \);
4. else if \(R_{j,k_{l-1}} > R_{j,k_l} \) & \& \(z_{j,k_{l-1}} \geq \max_{z_j \in z_{j,k_{l-1}} \cup z_{j,k_l}} z_{j,k_l}^* \) then
5. \(H_j \leftarrow H_j \setminus \{ k_l, k_{l+1}, ..., k_{l+1} \} \);
6. Break;

B. Dynamic Vertex Filtering

Due to the uneven end device distribution, some candidate deployment positions’ performance gains are meager. A natural step is to exclude the vertices of low performance gain from \(V(G) \) based on (36), which reduces the decision space for the DSC deployment while hardly sacrificing performance. If \(\beta_{j,k_l} \) is large, \(v_{j,k_l}^* \) is highly likely to be included in the output and should be preserved in the graph. If \(\beta_{j,k_l} \) is small, the negative effect of excluding \(v_{j,k_l}^* \) on performance is negligible.

In the worst case where no end device connects to the DSC at \(v_{j,k_l} \) (with \(\beta_{j,k_l} = 0 \)), \(v_{j,k_l}^* \) should be excluded. Next, we explain how to implement elastic vertex filtering.
Let ζ denote a threshold of performance gain. If $\beta_{j,k}^i \leq \zeta$, $v_{j,k}^i$ is removed from $V(G)$. The principle of setting the threshold is to ensure that the probability of $\beta_{j,k}^i > \zeta$ is not greater than θ, which is given by
\[
\Pr(\beta_{j,k}^i > \zeta) \leq \theta.
\]
By applying one-sided Chebyshev's inequality, we have
\[
\Pr(\beta_{j,k}^i > \zeta) \leq \frac{(\Delta\beta_{j,k}^i)^2}{(\Delta\beta_{j,k}^i)^2 + (\zeta - \beta_{j,k}^i)^2} \leq \frac{1}{\theta}
\]
where $\beta_{j,k}^i$ is the mean of $\beta_{j,k}$ and $\Delta\beta_{j,k}^i$ is the variance of $\beta_{j,k}$. The probabilistic guarantee in (39) leads to
\[
\frac{1}{\theta} = \beta_{j,k}^i + \zeta \sqrt{\frac{1}{\theta} - 1}.
\]
This policy can guarantee high-quality vertices while filtering vertices by adjusting θ.

C. Problem Approximation

Incorporating the proposed flight altitude control and vertex filtering, we present a general problem approximation. In the approximation, the vertex set is reduced to
\[
V'(G) = \{v_{j,k}^i | j \in J, \beta_{j,k}^i \leq \zeta\}
\]
where ζ is set as in (42). The flight height index of each vertex in (43) is determined by the plane position, which reduces the size of the decision space. The corresponding edge set is
\[
E'(G) = \{(v_{j,k}^i, v_{j',k'}^i) | h_{j,k} + \zeta (R_{j,k}^i + R_{j',k'}^i) + \psi, v_{j,k}^i, v_{j',k'}^i \in V'(G)\}.
\]
Based on (43) and (44), $P2$ is approximated as clique problem $P2$ related to DSC deployment.
\[
P2 : \text{Minimize } \sum_{v_{j,k}^i, v_{j',k'}^i \in V'(G)} q_{j,k}^i w_{j,k}
\]
\[
s.t. \sum_{v_{j,k}^i, v_{j',k'}^i \in V'(G)} q_{j,k}^i \leq \alpha
\]
\[
q_{j,k}^i + q_{j',k'}^i \leq 1, \forall (v_{j,k}^i, v_{j',k'}^i) \in E'(G)
\]
\[
q_{j,k}^i \in \{0,1\}, \forall v_{j,k}^i \in V'(G)
\]
In the minimization term, $w_{j,k}$ represents the value of $w_{j,k}$ where $a_{j,k}$ is replaced by $b_{j,k}$. The essence of problem $P1$ is to find plane index set $\{j_1, j_2, ..., j_q\}$ to minimize $\varphi(\mathcal{Q})$. Let $|\cdot|$ denotes the cardinality of a set. Because $|V'(G)| \leq |V(G)|$, the complexity of solving $P2$ is lower than that of solving $P1$.

Further, we consider a lightweight approximation as an alternative, where the flight altitude of all DSCs is fixed to $z^{(\text{max})}$. In this case, the performance gain of deploying a DSC at $v_j = (x_j, y_j, z^{(\text{max})})$ is simplified from (36) to $\sum_{i \in T_j} \hat{a}_{i,j}$, where T_j and $\hat{a}_{i,j}$ represent $T_{j,k}$ and $\hat{a}_{i,j}$ when $z_{j,k} = z^{(\text{max})}$. In this approximation, the vertex index set is compressed to
\[
V''(G) = \{v_j | j \in J, \sum_{i \in T_j} \hat{a}_{i,j} \leq \zeta\}
\]
where the role of ζ is identical to ζ in (43). The corresponding edge index set is
\[
E''(G) = \{(v_j, v_{j'}) | h_j + 2R^{(\text{max})} + \psi, v_j, v_{j'} \in V''(G)\}.
\]
Let q_j and \hat{w}_j denote $q_{j,k}$ and $\hat{w}_{j,k}$ when $z_{j,k}$ is set to $z^{(\text{max})}$. $P2$ is further approximated as $P3$.
\[
P3 : \text{Minimize } \sum_{v_j \in V''(G)} q_j \hat{w}_j
\]
\[
s.t. \sum_{v_j \in V''(G)} q_j \leq \alpha
\]
\[
q_j + q_{j'} \leq 1, \forall (v_j, v_{j'}) \in E''(G)
\]
\[
q_j \in \{0,1\}, \forall v_j \in V''(G)
\]
When a DSC hovers to height $z^{(\text{max})}$, the probability of adjacent DSCs staying within the DSC's interference range becomes the highest. Even with $|V''(G)| = |V(G)|$, we have $|E''(G)| \leq |E(G)|$, indicating that the number of cliques in $G(V'', E'')$ is less than that in $G(V', E')$, with reduced DSC deployment complexity. A suboptimal performance accompanies the reduction in the complexity.

Problems $P1$, $P2$, and $P3$ are different from the existing maximum weight clique problem [35] or maximum weight clique problem (the output is a clique of α vertices with the largest sum of all vertex weights) [36]. Since the number of DSCs placed is uncertain ($Q \leq \alpha$) and vertex weight $w_{j,k}$ is determined by Q instead of each vertex, it is inappropriate to find Q directly with existing clique algorithms. Hence, we need to design an adaptive clique algorithm.

D. Algorithm Design

A performance-aware clique algorithm is designed for problem-solving. Given a graph and the number of available DSCs, the algorithm outputs a clique, determining the amount of DSCs to be deployed and the deployment plan. We use $G(V', E')$ as a general input case to show the procedure of solving $P2$, which is summarized in Algorithm 2. The input graph to solve $P3$ is $G(V'', E'')$.

Let Φ_w denote the set for w-clique in the graph. Enumerating all the edges, we can find all the 2-cliques at the initial stage (line 1). Each 2-clique in the graph is put into Φ_2 for subsequent 3-clique searches. The elements contained in Φ_w can be used to find $(w+1)$-cliques by comparing all the pairs of w-cliques. If there are $(w-1)$ overlapped vertices between two different w-cliques and Φ_2 contains the missing edge (line 7), we can combine each pair of w-cliques into a new $(w+1)$-clique and put it in Φ_{w+1} (line 8). Repeat the execution until w equals to α or there is no $(w+1)$-clique (line 11). If Φ_2 is empty, the output is a vertex (line 15). Device-BS association patterns and resource allocation strategy can be obtained based on the algorithm's output.
Algorithm 2: search_clique \((G(V', E'), \alpha)\)

1. \(w \leftarrow 2; \Phi_w \leftarrow E'(G)\);
2. \(n \leftarrow 3\) to \(\alpha\) do
 3. \(\Phi_n \leftarrow \emptyset\);
4. if \(\Phi_2 \neq \emptyset\) then
 5. while \(w < \alpha\) do
 6. foreach \((Q, Q') \in \Phi_w\) do
 7. if \(\not\exists (Q - Q') \not\in (w - 1) & k\)
 8. \((Q \cup Q') \not\in \Phi_2\) then
 9. \(\Phi_{w+1} \leftarrow Q \cup Q';\)
 10. \(\Phi_w \leftarrow \Phi_w \setminus (Q \cup Q');\)
 11. if \(\Omega_{w+1} \neq \emptyset\) then
 12. Break;
 13. \(w \leftarrow w + 1;\)
 14. \(Q \leftarrow \{q_{j,k}\} \leftarrow \arg \min_{q_{j,k} \in V'(G)} \sum q_{j,k} \hat{w}_{j,k};\)
15. \(\text{return } Q;\)

The complexity of the proposed algorithm is different from determining whether \(G(V', E')\) contains an \(\alpha\)-clique (belonging to an NP-complete problem). The naive algorithm of \(\alpha\)-clique has a polynomial computational complexity of \(\left(\begin{array}{c} V'(G) \\ \alpha \end{array}\right) = O(|V'(G)|^\alpha)\) to examine all \(\alpha\)-tuples of vertices [36]. As finding the optimal clique \(Q\) in the given graph based on Algorithm 2 needs to examine all cliques whose number of vertices is less than \(\alpha\), the complexity of the entire traversal process is \(\sum_{j=1}^N \left(\begin{array}{c} V'(G) \\ \alpha \end{array}\right) = O(\sum_{j=1}^N |V'(G)|^\alpha)\).

V. PERFORMANCE EVALUATION

Simulation results are presented to verify the effectiveness of the proposed solution. All the simulations are carried out through Python and MATLAB. In the multi-DSC-assisted RAN, the height and coverage radius of the MBS is 10m and 800m. The coverage area of the MBS is divided into a set of grid areas. Each grid area has a length and width of 200m. Each intersection point of grid lines represents the x-y coordinate plane projection of a candidate DSC deployment position. The total number of the intersection points equals to the number of plane position indexes on the x-y axis, i.e., \(N\). The DSC flight height range is set to \([z_m, 200]\) with a fixed step size of 10m for adjacent heights (with \(H_j = \frac{200}{10m} = 20\) for \(j \in N\)). Each DSC has the same uplink transmit power of 250mW [25], while end devices have a low transmit power set to 3.2mW [37]. Two types of end devices are randomly distributed in the coverage region of the MBS. The periodic data packet arrival rate \(\lambda_d\) is 20 packet/s, while the average rate \(\lambda_o\) of machine-type packet arrivals is 5 packet/s [38]. The lengths of the machine-type packet and data packet (\(L_a\) and \(L_d\)) are 2000bit [38] and 9000bit. The machine-type packet deadline bound \(D^{(\text{max})}\) and deadline bound violation probability \(\varepsilon\) are 100ms and \(10^{-3}\) [38]. The detailed parameter setting is listed in Table II.

The proposed joint DSC deployment and resource allocation scheme (D2RA) is categorized into D2RA-1 and D2RA-2, corresponding to the solutions of problems \(P_2\) and \(P_3\). For further comparison and verification, we consider four baseline approaches in the following:

1) Maximum DSC Number First (MDNF), which incorporates the proposed flight altitude selection policy to deploy as many DSCs as possible (without the constraint on the number of available DSCs);
2) Most Association First (MAF) [25], which maximizes the number of device-DSC associations;
3) Maximum Device-Coverage First (MDCF) [29], which maximizes the number of end devices in the coverage region of DSCs;
4) Maximum Rate-Coverage First (MRCF), which maximizes the summation of transmission rates from end devices under the coverage of DSCs.

Each baseline approach is incorporated into our graph model to support the multi-DSC deployment. Of these methods, only the MDNF has no constraint on the number of available DSCs. We summarize these baseline strategies in a unified model as shown in Table III, where \(I_{j,k}\), \(I_{j,s}\), and \(\bar{a}_{i,j}\) represent \(I_{j,k}\), \(I_{j,s}\), and \(a_{i,j}\) when \(z_{j,k}\) is set to \(z^{(\text{max})} = 77.4m\) to maximize the effective coverage. Using the proposed interference graph framework, the DSC deployment can be incorporated into these strategies using one formulation with different inputs. For a fair comparison, the number of vertices in the D2RA-1 \((V'(G))\) is used to unify the number of vertices in each method. Taking the MAF as an example, we guarantee \(|V'(G)| = |V_2(G)|\) by adjusting \(\xi_2\).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude of the MBS ((z_m))</td>
<td>10m [25]</td>
</tr>
<tr>
<td>End device transmit power (p_i)</td>
<td>3.2mW [37]</td>
</tr>
<tr>
<td>DSC transmit power (p_{j,k})</td>
<td>250mW [25]</td>
</tr>
<tr>
<td>MUD/MTD packet arrival rate ((\lambda_d/\lambda_o))</td>
<td>20pkt/s [12]/5pkt/s [38]</td>
</tr>
<tr>
<td>MUD/MTD packet length ((L_d/\lambda_o))</td>
<td>9000bit [12]/2000bit [38]</td>
</tr>
<tr>
<td>Vertex filtering threshold (\theta)</td>
<td>0.98</td>
</tr>
<tr>
<td>MTD packet delay bound ((D^{(\text{max})}))</td>
<td>100ms [38]</td>
</tr>
<tr>
<td>Delay bound violation probability ((\varepsilon))</td>
<td>10^{-3} [38]</td>
</tr>
<tr>
<td>Number of MUDs/MTUs ((U/M))</td>
<td>50/50, 100/100</td>
</tr>
<tr>
<td>Urban environment parameter ((o/b))</td>
<td>9.61/0.16 [26]</td>
</tr>
<tr>
<td>Carrier frequency ((f))</td>
<td>3.5GHz [39]</td>
</tr>
<tr>
<td>Interference frequency ((\psi))</td>
<td>200m [27]</td>
</tr>
<tr>
<td>LoS probability threshold ((\xi))</td>
<td>0.5</td>
</tr>
<tr>
<td>Free space path-loss threshold ((\chi))</td>
<td>89dB [29]</td>
</tr>
<tr>
<td>LoS/NLoS path-loss ((k_{\text{LoS}}/k_{\text{NLoS}}))</td>
<td>103.4dB/131.4dB [25]</td>
</tr>
<tr>
<td>(k_{\text{LoS}}/k_{\text{NLoS}}) exponent ((p_{\text{LoS}}/p_{\text{NLoS}}))</td>
<td>24.2dB/42.8dB [25]</td>
</tr>
</tbody>
</table>
Fig. 5. Impact of the number of available DSCs (Case Study I).

Fig. 6. DSC placement scenarios (Case Study I).
In Fig. 5(a), the total resource consumption using the D2RA and MAF is almost the same when α is small. In particular, the D2RA-1 is more resource-efficient and can accommodate more DSCs than the D2RA-2 and MAF. Since the adaptive altitude selection in the D2RA-1 improves and spectrum reuse among DSCs, the D2RA-1 can save up to 16% of resources when $\alpha > 4$. Although the D2RA-2 and MAF cover more devices and increase the probability of device-DSC associations, their flight height selection is unreasonable. Due to the interference distance constraint, there is an upper bound on the number of DSCs that can be accommodated in the MBS’s 3D coverage space. The flight height adaptation in the D2RA-1 and MDNF helps capture potential spectrum reuse opportunities while accommodating more DSCs. In Fig. 5(a), the approaches using fixed flight height can accommodate up to 5 DSCs, and their results remain unchanged if $\alpha > 5$. In the case of $\alpha = 6$, the D2RA-1 with 5 DSCs consumes lower resources than other methods with 6 DSCs, indicating that the D2RA-1 can reduce DSC dispatching cost while saving resources.

Figs. 5(b) and (c) show results on the resource consumption from MUDs and MTDs. Because an MUD requires a higher rate than an MTD, the former consumes more resources than the latter. The trend in Fig. 5(d) is similar to that of Fig. 5(a), since most devices connect to the MBS. In Fig. 5(e), the increase of α has a slight impact on the resource consumption of G2D links through spectrum reuse. In Fig. 5(f), more resources are consumed for D2M communications without spectrum reuse. In Fig. 5(g), the amount of resources reused by DSCs for G2D links is calculated as $\sum_{v_j \in V(G) \setminus \{v_j \}} \delta_{j,s}$, which is proportional to α. In Figs. 5(h) and 5(i), the MDCF has the most significant number of devices but a small number of device-DSC associations. Compared with the MDCF and MRCF, the D2RA and MAF maintain a higher number of device-DSC associations. Once a DSC covers a device, the device connects to the DSC with a high probability.

Fig. 6 shows various DSC deployment scenarios. The big (small) black circle represents the coverages of the MBS (DSC). The number surrounded by the small circle represents the height of the corresponding DSC. Those randomly distributed blue circles (red crosses) under the BS coverage areas represent MUDs (MTDs).

In Figs. 6(a)-6(c), the DSC deployment determined by the D2RA-1 changes with the increase of α. When a new DSC joins, the placement plan needs to be adjusted to mitigate inter-DSC interference. Under the distance constraint, the increase of α means that each DSC has to reduce coverage radius

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Set of candidate DSC deployment positions</th>
<th>Optimization objective for DSC deployment</th>
<th>Available DSC num. (α)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDNF</td>
<td>$V_1(G) = {v_j, k_j^*</td>
<td>j \in N, \beta_j k_j^* \leq \xi_1 }$</td>
<td>Maximize $\sum_{v_j \in V_1(G)} q_j k_j^* W_j k_j^*$</td>
</tr>
<tr>
<td>MAF</td>
<td>$V_2(G) = {v_j</td>
<td>j \in N, \sum_{i \in I_j} \tilde{a}_{i,j} \leq \xi_2 }$</td>
<td>Maximize $\sum_{v_j \in V_2(G)} q_j \sum_{i \in I_j} \tilde{a}_{i,j}$</td>
</tr>
<tr>
<td>MDCF</td>
<td>$V_3(G) = {v_j</td>
<td>j \in N, I_j \leq \xi_3 }$</td>
<td>Maximize $\sum_{v_j \in V_3(G)} I_j$</td>
</tr>
<tr>
<td>MRCF</td>
<td>$V_4(G) = {v_j</td>
<td>j \in N, \sum_{s \in {1,2}} Y_s I_j s \leq \xi_4 }$</td>
<td>Maximize $\sum_{v_j \in V_4(G)} q_j I_j s$</td>
</tr>
</tbody>
</table>
Fig. 7. Impact of the number of available DSCs (Case Study II).

Fig. 8. DSC placement scenarios (Case Study II).
trend as α increases. Since the D2RA-1 consumes the least resources, the reused resources are lower than that of the other methods. Figs. 7(h) and 7(i) show that maximizing the number of devices covered by DSCs or the number of device-DSC associations fails to improve overall performance.

In Figs. 8(a)-(f), the DSCs’ plane projection positions are approximately the same in the case of $\alpha = 4$ and $\alpha = 5$. The advantage of the D2RA-1 lies in its flight altitude adaptive policy, which can reuse spectrum resources more effectively than the D2RA-2 with fixed flight height. Comparing Fig. 8(g) and Fig. 8(h), we can see that the DSC deployment using the MAF is better than that using the MDCF. The MDCF can enable DSCs to cover the largest number of end devices. Still, it does not guarantee that most devices are associated with DSCs, especially when DSCs are located close to the MBS center. Because the MAF can effectively cover edge hotspots with an increased number of device-DSC associations, the entire network’s resource utilization is improved.

VI. CONCLUSION

In this paper, we have proposed a multi-DSC assisted uplink radio resource slicing scheme, in which the resource consumption is minimized with differentiated QoS guarantees for MUDs and MTDs. An interference graph model is present to characterize the multi-DSC deployment while mitigating inter-DSC interference. On this basis, a joint optimization problem on the DSC placement and device-BS association is formulated and proved to be NP-hard. By excluding candidate DSC deployment position with low-performance gain, we establish a complexity-adjustable problem approximation, which incorporates a flight height adaptive policy. A lightweight approximation with a fixed flight altitude is also presented to reduce complexity further. The joint optimization problem is transformed into a special weight clique problem, with a performance-aware clique algorithm designed to determine the DSC placement and device-DSC association patterns. Simulation results demonstrate that the proposed DSC deployment and resource slicing scheme achieves significant performance improvement over the benchmarks.

APPENDIX

A. Proof of Proposition 1

In the case of $a_{i,j,k} \in \{0, 1\}$ for $i \in I_{j,k}$, the lower bound of $w_{j,k}$ is calculated as

$$w_{j,k}^{(\min)} = \begin{cases} \sum_{s \in \{1, 2\}} \sum_{l \in \mathcal{I}_{j,k,s}} \left(\frac{Y_s}{r_{i,j,k,s}} + \frac{Y_s}{r_{j,k,m}} \right) & \text{if } v_{j,k} = v_{j^*,k^*} \\ \sum_{s \in \{1, 2\}} \sum_{l \in \mathcal{I}_{j,k,s}} \left(\frac{Y_s}{r_{j,k,m}} \right) & \text{if } v_{j,k} \not= v_{j^*,k^*} \in Q \end{cases}$$

(49)

Under (34), we have $w_{j,k} = w_{j,k}^{(\min)}$. Since $\varphi^{(\min)}(Q) = \sum_{v_{j,k} \in Q} w_{j,k}^{(\min)}$ as in (33), the conclusion of Proposition 1 holds.

B. Proof of Proposition 2

Let $v_{j,k}^{*,q'}$ and $v_{j,k}^{*,q''}$ denote v_{j^*,k^*} under Q and Q', respectively. There are two cases (i.e., $v_{j,k}^{*,q'} \not= v_{j,k}^{*,q''}$) to be considered. For the first case where $v_{j,k}^{*,q'} = v_{j,k}^{*,q''}$, we have (50). For the second case where $v_{j,k}^{*,q'} \not= v_{j,k}^{*,q''}$, we have (51).

Similar to Proposition 1, under (34), the values of (50) and (51) are greater than 0.

C. Proof of Theorem 1

Consider a special case of Case 1, which satisfies: 1) $\delta_j, k = 0$, where $\delta_{j,k}$ is the weight of the edge between nodes j and k in G; 2) $a_{i,j,k} = 1$, for all $i \in I_{j,k}$; and 3) α is sufficiently large. Since the value of δ is constant for any Q, the objective is equivalent to minimizing $\sum_{v_{j,k} \in V(G)} w_{j,k}$, where

$$w_{j,k} = \sum_{s \in \{1, 2\}} \sum_{l \in \mathcal{I}_{j,k,s}} \left(\frac{Y_s}{r_{j,k,m}} - \frac{Y_s}{r_{i,m}} \right).$$

(52)

Because $w_{j,k}$ in (52) is determined by $v_{j,k}$, P_1 becomes the maximum weight clique problem [35], whose NP-complete nature is well known. So, P_1, as a general case, is NP-hard.

D. Proof of Theorem 2

If $R_{j,k,-} < R_{j,k}$, we have $I_{j,k-1} \subseteq I_{j,k}$, and

$$\beta_{j,k} = \sum_{i \in I_{j,k-1}} a_{i,j,k} \left(\frac{1}{r_{i,m}} - \left(\frac{1}{r_{i,j,k-1}} + \frac{1}{r_{j,k,m}} \right) \right)$$

(53)

Because each term in (53) is larger than 0, we have

$$\beta_{j,k} \geq \sum_{i \in I_{j,k-1}} a_{i,j,k} \left(\frac{1}{r_{i,m}} - \left(\frac{1}{r_{i,j,k-1}} + \frac{1}{r_{j,k,m}} \right) \right).$$

(54)

If $z_{j,k} = \min_{i \in I_{j,k-1}} z_{j,k-1}$, then for each $i \in I_{j,k-1}$, the value of $\frac{1}{r_{i,j,k-1}} + \frac{1}{r_{j,k,m}}$ decreases in $[0, z_{j,k}]$ as l increases. Then, we have

$$\beta_{j,k-1} = \sum_{i \in I_{j,k-1}} a_{i,j,k-1} \left(\frac{1}{r_{i,m}} - \left(\frac{1}{r_{i,j,k-1}} + \frac{1}{r_{j,k,m}} \right) \right) \leq \sum_{i \in I_{j,k-1}} a_{i,j,k-1} \left(\frac{1}{r_{i,m}} - \left(\frac{1}{r_{i,j,k-1}} + \frac{1}{r_{j,k,m}} \right) \right).$$

(55)

Comparing (54) and (55), we have $\beta_{j,k} \geq \beta_{j,k-1}$, which completes the proof.

E. Proof of Theorem 3

If $R_{j,k-1} > R_{j,k}$, we have $I_{j,k} \subseteq I_{j,k-1}$ and

$$\beta_{j,k} = \sum_{i \in I_{j,k}} a_{i,j,k} \left(\frac{1}{r_{i,m}} - \left(\frac{1}{r_{i,j,k-1}} + \frac{1}{r_{j,k,m}} \right) \right)$$

(56)

$$+ \sum_{i \in I_{j,k-1} \setminus I_{j,k}} a_{i,j,k-1} \left(\frac{1}{r_{i,m}} - \left(\frac{1}{r_{i,j,k-1}} + \frac{1}{r_{j,k,m}} \right) \right).$$
\[
\phi^{(\min)}(Q) - \phi^{(\min)}(Q') = \sum_{v_{j,k} \in (Q \setminus Q') \cap \{v_{j,k}^s, s \in \{1,2\} \cup \{l \}} a_{r_{j,k,m}} \left(\frac{Y_s}{r_{i,m}} - \frac{Y_s}{r_{i,m}} \right) = \sum_{v_{j,k} \in (Q \setminus Q') \cap \{v_{j,k}^s, k \}} a_{r_{j,k,m}} \left(\frac{Y_s}{r_{i,m}} - \frac{Y_s}{r_{i,m}} \right)
\]

(50)

\[
\phi^{(\min)}(Q) - \phi^{(\min)}(Q') = \sum_{v_{j,k} \in (Q \setminus Q') \cap \{v_{j,k}^s, k \}} a_{r_{j,k,m}} \left(\frac{Y_s}{r_{i,m}} - \frac{Y_s}{r_{i,m}} \right) = \sum_{s \in \{1,2\} \cap \{l \}} a_{r_{j,k,m}} \left(\frac{Y_s}{r_{i,m}} - \frac{Y_s}{r_{i,m}} \right) + \sum_{s \in \{1,2\} \cap \{l \}} a_{r_{j,k,m}} \left(\frac{Y_s}{r_{i,m}} - \frac{Y_s}{r_{i,m}} \right)
\]

(51)

Because each term in (56) is larger than 0, we have

\[
\beta_{j,k} \geq \sum_{i \in \mathcal{I}_{j,k}} \tilde{a}_{i,j,k} \left(\frac{1}{r_{i,m}} - \frac{1}{r_{i,j,k-1}} \right)
\]

(57)

If \(z_{j,k-1} \geq \max_{i \in \mathcal{I}_{j,k}} z_{i,j,k} \), then for each \(i \in \mathcal{I}_{j,k-1} \), the value of \(\frac{1}{r_{i,j,k-1}} + \frac{1}{r_{i,j,k-1, m}} \) increases in \(z_{j,k-1} \), so \(\beta_{j,k} \) increases. Accordingly, we have

\[
\beta_{j,k} \leq \sum_{i \in \mathcal{I}_{j,k}} \tilde{a}_{i,j,k-1} \left(\frac{1}{r_{i,j,k-1}} - \frac{1}{r_{i,j,k-1}} \right)
\]

(58)

Based on (57) and (58), we have \(\beta_{j,k} \leq \beta_{j,k-1} \). Because \(z_{j,k+1} > z_{j,k+1} \), we get \(\beta_{j,k+n} \leq \beta_{j,k-1} \) given \(n \in \{1, 2, ..., H_n - 1\} \), which completes the proof.

References

[26] H. Peng and X. Shen, “Multi-agent reinforcement learning based re-
source management in MEC- and UAV-assisted vehicular networks,”
“Multiple drone-cell deployment analyses and optimization in drone
assisted radio access networks,” IEEE Access, vol. 6, pp. 12518–12529,
2018.
for maximum coverage,” IEEE Wireless Commun. Lett., vol. 3, no. 6,
[31] D. Wu and R. Negi, “Effective capacity-based quality of service mea-
traffic issues in machine-to-machine communications over LTE,” IEEE
[33] P. M. Rabinovitch, “Statistical estimation of effective bandwidth.” Mas-
[34] A. Abdabou and W. Zhuang, "Stochastic delay guarantees and statistical
call admission control for IEEE 802.11 single-hop ad hoc networks,”
[35] Y. Wang, S. Cai, and M. Yin, “Two efficient local search algorithms for
[37] S. M. Hussain, A. Wahid, M. A. Shah, A. Akhunzada, F. Khan,
N. ul Amin, S. Arshad, and I. Ali, “Seven pillars to achieve energy
efficiency in high-performance computing data centers,” in Recent
Trends and Advances in Wireless and IoT-enabled Networks, 2019, pp.
93–105.
[38] 3GPP, “Feasibility study on new services and markets technology
enablers for critical communications; stage 1 (Release 14),” Generation
[39] I.-P. Belikaidis, A. Georgakopoulos, E. Kosmatsos, V. Frascolla, and
P. Demestichas, “Management of 3.5-GHz spectrum in 5G dense net-