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Abstract—The distributed nature of the CSMA/CA based wireless protocols, e.g., the IEEE 802.11 distributed coordinated
function (DCF), allows malicious nodes to deliberately manipulate their backoff parameters and thus unfairly gain a large share
of the network throughput. In this paper, we first design a real-time backoff misbehavior detector, termed as the fair share detector
(FS detector), which exploits the non-parametric cumulative sum (CUSUM) test to quickly find a selfish malicious node without
any a priori knowledge of the statistics of the selfish misbehavior. While most of the existing schemes for selfish misbehavior
detection depend on heuristic parameter configuration and experimental performance evaluation, we develop a Markov chain
based analytical model to systematically study the performance of the FS detector in real-time backoff misbehavior detection.
Based on the analytical model, we can quantitatively compute the system configuration parameters for guaranteed performance
in terms of average false positive rate, average detection delay and missed detection ratio under a detection delay constraint. We
present thorough simulation results to confirm the accuracy of our theoretical analysis as well as demonstrate the performance
of the developed FS detector.
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1 INTRODUCTION

THE IEEE 802.11 based wireless local area networks
(WLANs) have been widely deployed over re-

cent years due to their high-speed access, easy-to-
use features and economical advantages. To resolve
the contention issue among the multiple participat-
ing nodes, 802.11 employs the carrier sense multiple
access/collision avoidance (CSMA/CA) protocol to
ensure that each node gets a reasonably fair share of
the network. This is particularly the case for the dis-
tributed cooperation function (DCF) of 802.11, where
every node accesses the network in a cooperative
manner and randomly delays transmissions to avoid
collisions by following a common backoff rule [1].
However, in such a distributed environment without
a centralized controller, a malicious node may delib-
erately choose a smaller backoff timer and selfishly
gain an unfair share of the network throughput at
the expenses of other normal nodes’ channel access
opportunities. Moreover, only to make things worse,
the easily available programmable and reconfigurable
wireless network devices nowadays [2], [3] make the
backoff misbehavior much more feasible.
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To efficiently detect the backoff misbehavior, a de-
tection scheme needs to address the two main cor-
related challenges: 1) unknown misbehavior strategy,
2) real-time detection of the misbehavior. For the first
challenge, since a malicious node can first behave as
a normal node and then manipulate its backoff timer
to a random small value at any time, we have no
way to know the misbehavior strategy a priori. For
the second, the misbehavior needs to be detected in
real time and we can then isolate the malicious node
to prevent it from bringing more harm to the network
as soon as possible. The existing solutions either can
not address both issues at the same time [4], [5], [6],
[7], or require modifications to the 802.11 protocols
[8], [9].

Addressing the challenges, in this paper we first de-
sign a real-time backoff misbehavior detector, termed
as the fair share detector (FS detector), which exploits
the non-parametric cumulative sum (CUSUM) test to
quickly find a selfish malicious node without any
a priori knowledge of the statistics of the selfish
misbehavior. The work in [3] develops a robust de-
tector for backoff misbehavior detection based on
the Kolmogorov-Smirnov (K-S) test, without a priori
knowledge of the misbehavior strategy either. The
detector resorts to estimating the collision probability
of a transmission to establish the distribution of the
idle time between two consecutive successful trans-
missions from a tagged node. The collision estima-
tion is however done with an approximate method
for short detection delay; such an approximation in
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fact negatively impacts the performance in both false
positive rate and detection delay, to be discussed in
detail in Section 7. In our preliminary work [19], we
adopt the non-parametric CUSUM test for the backoff
misbehavior detection as well. The detector in [19]
directly counts the number of successful transmis-
sions of a tagged node within an observation window
to obtain a sample. The observation window needs
to linearly increase with the number of nodes in
the network to fairly count transmissions from each
node, which as a result will increase the detection
delay. The FS detector newly developed in this paper
takes each successful transmission over the network
as its observation sample. Such a sampling method
is independent of the network size and turns out to
result in good performance in both false positive rate
and detection delay. Also, the FS detector does not
require any modification to the protocols, and can be
implemented by any node assuming the role of the
detection agent that monitors the network.

Another significant open research issue regarding
the selfish misbehavior detection is that most of the
existing detection schemes depend on heuristic pa-
rameter configuration and experimental performance
evaluation [3], [4], [10], [11]. Such a heuristic approach
largely limits the flexibility and robustness of the
detection scheme; a change of the operation context
could trigger the retraining of the configuration pa-
rameters by experimenting over a large set of data
traces and the performance under those heuristic pa-
rameters is not theoretically provable.

To address the issue, in this paper we further de-
velop an analytical model for the FS detector, which
can provide quantitative performance analysis and
theoretical guidance on system parameter configura-
tion. Specifically, we use a discrete-time Markov chain
to model the behavior of the detector, because the
detector’s next state depends only on its current value
and the coming observation sample. This Markov
chain based model enables us to conduct rigorous
quantitative analysis of the FS detector on three fun-
damental metrics: average false positive rate, average
detection delay, and missed detection ratio, and further
compute the system configuration for guaranteed per-
formance. In particular, the Markov chain modeling
the FS detector takes different transition probabilities
under the normal traffic condition and under the
abnormal condition with misbehaving nodes present,
respectively. The Markov chain obtained from the
normal traffic condition can be used to directly cal-
culate the average false positive rate and also provide
the initial states for misbehavior analysis. Based on
these initial states, we can then use the Markov chain
under the abnormal conditions to analyze the average
detection delay and the missed detection ratio. Note
that the missed detection ratio is not often considered
in the context of CUSUM test due to its “non-stop
until detection” property. In this paper, we examine a

missed detection ratio under a detection delay constraint,
which is of importance regarding real-time detection.

In summary, the main contributions of the paper
come in four aspects: 1) We develop an effective
detector for real-time misbehavior detection in 802.11
based wireless networks. 2) We develop a discrete-
time Markov chain based model to characterize the
detection system. 3) We utilize the model to con-
duct rigorous quantitative analysis of the detector
and guide the system configuration for guaranteed
performance. 4) We provide analytical and simulation
results to confirm the accuracy of our theoretical anal-
ysis, and demonstrate the robust performance of the
developed FS detector under varying network size,
against the short-term unfairness, and in the situation
when both UDP and TCP traffic exists.

The rest of the paper is organized as follows. Sec-
tion 2 reviews more related work. Section 3 describes
the system model. In Section 4, we present the detec-
tor design. Section 5 develops the Markov chain based
analytical model, and Section 6 gives the theoretical
performance analysis based on the Markov chain
model. Section 7 presents the simulation results. Sec-
tion 8 discusses how to extend our analytical model to
address the case of multiple malicious nodes as well
as misbehavior beyond backoff timer manipulation.
Section 9 concludes the paper.

2 RELATED WORK

The problem of detecting backoff misbehavior over
the 802.11-based medium access control (MAC) proto-
col has been widely studied in the literature. In [8], [9],
a modification to the 802.11 protocol is proposed to fa-
cilitate the misbehavior detection, where the receiver
assigns a backoff timer for the sender. If the number
of idle slots between consecutive transmissions from
the sender does not comply with the assigned backoff
timer, the receiver may label the sender as a selfish
node. Modification to the 802.11 protocol and reliance
on a trustworthy receiver are the main limitations of
the work.

Another approach to deal with the backoff misbe-
havior is to develop protocols based on the game-
theoretic techniques [14], [15], [16]. The goal is to
encourage all the nodes to reach a Nash equilibrium.
As a result, a malicious node is not able to gain an
unfair share compared to well-behaved nodes and
thus discouraged from the misbehavior. However, this
category of approaches assume that all the nodes are
willing to deviate from the protocol when necessary,
and the standard protocol needs to be modified. A
heuristic sequence of conditions are proposed in [17],
[18] to test multiple misbehavior options over the
802.11 MAC based on simple numerical comparisons.
This approach, named DOMINO, preserves its advan-
tage of simplicity and easiness of implementation, and
still demonstrates its efficiency when dealing with a
wide range of 802.11 MAC misbehavior. However, the
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heuristic nature of the approach limits its applications
to specific scenarios.

The sequential probability ratio test (SPRT) method
is used in [5], [6], [7] to detect the 802.11 backoff
misbehavior. The detection decision is made when a
random walk of the likelihood ratio of observations
(given two hypotheses) rises to be larger than an
upper threshold. The main advantage of SPRT is that
it can reach decision very fast, given the complete
knowledge of both normal behavior and backoff mis-
behavior strategy [20]. However, in a realistic setting,
the strategy of malicious nodes is hard to know in
advance. Further, the existing work normally assumes
that the backoff timer of each node is observable,
which is again hard to achieve in practice because
the transmission attempts involved in a collision are
impossible to be distinguished. In our design, we
monitor the successful transmission of the tagged
node as the observation measurement.

The authors in [3], [4] utilize the Kolmogorov-
Smirnov (K-S) significance test for backoff misbehav-
ior detection. This test is able to make the decision by
measuring the distribution of the idle time between
consecutive successful transmissions from a tagged
node and comparing it to the normal backoff behavior.
The detection method in [3], [4] requires estimation
of the collision probability of a packet transmitted.
However, an inaccurate simplification there is to con-
sider that packets from the misbehaving node and
those from the normal nodes have the same collision
probability. Such inaccuracy impacts both the perfor-
mance of false positive rate and detection delay, to be
demonstrated in Section 7. Furthermore, as a batch
test method, the K-S statistic has its own drawback.
Fixed-size data samples are needed to perform the test
each time, which makes real-time detection difficult.

In our preliminary work [19], we adopt the non-
parametric CUSUM test [12] for the backoff misbe-
havior detection, which has the advantages of both
real-time detection and no requirement of a priori
knowledge of the misbehavior strategy. The detector
in [19] directly counts the number of successful trans-
missions from a tagged node within an observation
window1 to get a sample. Although such a sampling
method is easy for implementation, the observation
window needs to linearly increase with the number
of nodes in the network to fairly count transmissions
from each node, which as a result will increase the
detection delay. In this paper, we develop the new
FS detector, which takes every successful transmission
over the network as a sample to trigger its state
change. Such a sampling method is independent of
the network size and turns out to result in good
performance in both false positive rate and detection
delay, as to be demonstrated later in this paper.

1. An observation window is defined as a certain number of
consecutive successful transmissions over the whole network [19].

A common research issue among most of the ex-
isting schemes for misbehavior detection is their de-
pendency on heuristic parameter configuration and
experimental performance evaluation, which largely
limits the flexibility and robustness of the schemes. To
address this issue, in [19], we propose a Markov chain
based analytical model to theoretically analyze the
detection performance and quantitatively configure
the system parameters. In this paper, we develop the
analytical model according to the newly proposed FS
detector. Our analysis demonstrates performance im-
provement of the FS detector in real-time misbehavior
detection over the original detector in [19]. Also, we
demonstrate the robustness of the FS detector under
varying network size, against the short-term unfair-
ness, and in the situation when both UDP and TCP
traffic exists.

3 SYSTEM MODEL

3.1 IEEE 802.11 DCF

There are two major functions in the IEEE 802.11
protocols: the point coordination function (PCF) and
the distributed coordination function (DCF). The PCF
is a centralized function and is an optional feature
in 802.11. Here, our focus is on the more widely
used DCF protocol. In the DCF, every node con-
tends for access to the wireless medium following
the CSMA/CA function [1]. When a node attempts to
transmit a packet, it needs to sense the medium idle
for a specified time. The time is divided into slots
of constant duration, and a node can only transmit
at the beginning of a slot time. If the medium is
not idle, the node will enter a backoff stage and
defer the transmission according to a timer before
attempting the next transmission. This backoff timer
is a random value uniformly selected from the range
[0, CWmin − 1], where CWmin is called the minimum
contention window with a standard value of 32.
The timer will decrease if the medium is continu-
ously sensed idle and freeze whenever the medium
is sensed busy. After the timer reaches 0, the node
will attempt another transmission. Each unsuccess-
ful transmission will double the contention window
size until it reaches the maximum value CWmax =
2mCWmin, where m is called the maximum backoff
stage with a standard value of 5. This operation is also
referred to as the binary exponential backoff scheme.
After a successful transmission, the node will reset the
contention window to CWmin and continue sensing
the medium if it has more packets to transmit.

3.2 Backoff Misbehavior in IEEE 802.11 DCF

As a distributed protocol, the DCF assumes that every
node in the network operates in accordance with the
standard to obtain a fair share of the wireless medium.
Since there is no central controlling unit which assigns
the backoff timer for each node, a malicious node can
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continuously choose a small backoff timer and then
gain significant advantages in channel access prob-
ability over others. Moreover, because the increased
transmission probability of the malicious node causes
more collisions, normal nodes are forced to further
exponentially defer their transmissions as they oper-
ate according to the protocol. The backoff misbehavior
can drastically decrease the transmission probability
of normal nodes and subsequently severely reduce
their throughput. In an extreme case where a mali-
cious node sets its own backoff timer to a very small
constant value, it will lead to denial of service (DoS)
of the whole network. Thus, a detection scheme capa-
ble of quickly identifying the misbehaving malicious
node is highly desired.

4 DETECTOR DESIGN

We consider a saturated situation that a node always
has data to send when the channel is available. Al-
though a network in practice is not always saturated,
the saturated scenario is of meaningful concern in
the context of selfish misbehaving. If the network is
lightly loaded, a misbehaving node will not impact
much the throughput of normal ones. When the net-
work is close to full utilization, the data buffer in
every node has a very small probability to be empty,
where the saturated model is a good approximation.

4.1 The Observation Measure
Consider a tagged node v. In our detection system,
the observation measure is an indicator of whether a
successful transmission over the network belongs to
the tagged node v, denoted as Iv . We take the popular
modeling technique [1] that each node independently
accesses an idle channel for transmission with a prob-
ability determined by its contention window size. If
we use qvs to denote the probability that a successful
transmission over the network is from node v, the
probability distribution of Iv is given by

P{Iv = k} =

{
qvs if k = 1,

1− qvs if k = 0.
(1)

In a normal situation that every node follows the
802.11 DCF standard, it can be seen that qvs = 1

N due to
fair channel sharing, given N nodes in the network. If
node v is a malicious node taking a smaller contention
window size, it will achieve a qvs larger than 1

N and
thus a larger portion of the network throughput. In
Section 6, we will present how to calculate qvs given
the contention window size. The distribution of Iv in
(1) is the basis to establish our analytical model.

Remark In an 802.11 network, a node that has just
accomplished a successful transmission will have ad-
vantages in grabbing the channel for next transmis-
sion in a short period [13]. This is referred to as short-
term unfairness and is inherent to the 802.11 backoff
mechanism. Such an issue implies correlations among

the channel accesses, which may impact the accuracy
of (1) to model the successful transmission of the
tagged node based on the assumption of indepen-
dent channel access. In [19], we apply a shuffling
mechanism to observation samples to mitigate the
impact of short-term unfairness. In Section 7, we
provide detailed analysis to show that the FS detector
is inherently robust against short-term unfairness,
and the detection based on (1) does give accurate
decisions. The fairness issue also exists when both
user datagram protocol (UDP) and transmission con-
trol protocol (TCP) traffic flows exist in the network,
where the TCP traffic tends to be overwhelmed by
UDP traffic due to its congestion control mechanism.
In Section 7, we also discuss how to apply the FS
detector for robust performance when both UDP and
TCP traffic flows exist in the network.

4.2 Fair Share Detector
Let {In, n = 0, 1, ....} be the sequence of sample values
of Iv , observed each time a successful transmission
appears on the channel. Here, we drop the superscript
v for easier presentation considering the clear context.
There are N nodes and one access point (AP) in the
network. Suppose that the initial value of the detector
is X0 = 0. If a successful transmission upon the nth
observation is from the tagged node, i.e., In = 1, the
detector Xn increases by N − 1; otherwise, In = 0,
and Xn decreases by 1 until it reaches 0. The intuition
of this design is as follows: In the normal situation,
each node roughly takes turn to transmit; the increase
of Xn caused by one successful transmission from
the tagged node can then be equally offset by the
successful transmissions from other N−1 non-tagged
nodes. Thus, the detector Xn will fluctuate around a
low value close to zero in the normal situation. On the
other hand, when the tagged node turns to misbehave
and obtain more chances to transmit, it is not difficult
to see that Xn is going to quickly accumulate to a
large positive value.

The behavior of the FS detector can be mathemati-
cally described as

Xn+1 = (Xn + (NIn − 1))+

X0 = 0 (2)

where (x)+ = x if x ≥ 0 or 0 otherwise. We can see
that (2) is actually in the form of a non-parametric
CUSUM detector [12]. Let ℎ be the detection thresh-
old. The decision rule of the detector in step n is

±n =

{
1 if Xn ≥ ℎ

0 if Xn < ℎ
(3)

where ±n is also an indicator function of whether the
detection event happens or not. The detector value
Xn will be reset back to 0 as soon as it exceeds
the threshold and the detection procedure starts over
again.
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5 MARKOV CHAIN BASED MODEL

Consider the sequence {Xn} as a discrete random
process, which takes values from a finite set A =
{0, 1, 2, ..., ℎ}. The process is said to be in state i at
time n if Xn = i with i ∈ A. The state transition
happens when a successful transmission over the
network is observed. According to (2), the next state
Xn+1 depends only on the current state Xn and is
independent of any other previous states, where the
transition probability is

Pij = P{Xn+1 = j∣Xn = i} i, j ∈ A. (4)

Thus the random process {Xn} satisfies the Markov
property and can be modeled as a discrete-time
Markov chain.

Given the decision threshold ℎ, the Markov chain
is then described by a (ℎ + 1) × (ℎ + 1) transition
probability matrix as

P =

⎛
⎜⎜⎜⎜⎝

P00 P01 P02 . . . P0ℎ

P10 P11 P12 . . . P1ℎ

...
...

...
. . .

...
Pℎ0 Pℎ1 Pℎ2 . . . Pℎℎ

⎞
⎟⎟⎟⎟⎠

.

This transition probability matrix can be divided into
three distinct groups based on the operation of the FS
detector.

Group 1 consists of Pij for i = 0 and j ∈ [0, ℎ], with
values

P0j =

⎧
⎨
⎩

P{In = 0} if j = 0,

P{In = 1} if j = N − 1 and N − 1 ≤ ℎ,

P{In = 1} if j = ℎ and N − 1 > ℎ,

0 otherwise.
(5)

This group is related to the transitions from state 0 to
other states. According to the state transition equation
(2), the detector variable Xn jumps out of state 0 only
when the observed successful transmission is from the
tagged node, that is, In = 1. Further, Xn makes a
transition to either N − 1 or ℎ depending on whether
N − 1 is greater than ℎ or not. Note that the state ℎ
in fact incorporates all possible states Xn ≥ ℎ, as the
detector will raise an alarm when the state hits ℎ.

Group 2 consists of Pij for i ∈ [1, ℎ−1] and j ∈ [0, ℎ],
with values

Pij =

⎧
⎨
⎩

P{In = 0} if j = i− 1,

P{In = 1} if j = i+N − 1 and
i+N − 1 ≤ ℎ,

P{In = 1} if j = ℎ and
i+N − 1 > ℎ,

0 otherwise.

(6)

This group describes the typical behavior of the detec-
tor. The state can transit to left (i.e., to a smaller value)

when In = 0 or to right (i.e., to a larger value) when
In = 1, according to the state transition equation (2).

Finally, group 3 consists of Pij for i = ℎ and j ∈
[0, ℎ], with values

Pℎj =

{
1 if j = 0,

0 otherwise.
(7)

This group is related to the transitions out of state ℎ.
Since the detector value will be reset to 0 as soon as
it reaches or exceeds ℎ, Pℎ0 = 1.

6 THEORETICAL PERFORMANCE ANALYSIS

In this section, we conduct theoretical performance
analysis of the FS detector based on the Markov chain
model in terms of the three fundamental metrics to
change detection: average false positive rate, average
detection delay, and missed detection ratio under a
detection delay bound. Then we show how we can
configure the system parameters to achieve guaran-
teed performance. We also analyze the performance
of the detector when the number of nodes is varying,
which is a typical scenario in the 802.11 based wireless
networks.

6.1 Average False Positive Rate
The average false positive rate Pfp is the rate that the
detector value Xn hits state ℎ given the fact that there
is no node in the network misbehaving. According to
the theory on the discrete-time Markov chain, such a
rate is equal to the steady-state probability that the
Markov chain describing the FS detector stays at ℎ in
the normal condition.

In the normal condition with a fair share of the
channel access, we have qvs = 1

N for a tagged node.
We can calculate the distribution of In according to (1),
and further obtain the transition probabilities matrix
P according to (5)−(7).

Let (¼0, ..., ¼ℎ) denote the steady state probabilities
of the Markov chain, which can be solved from the
equations

¼j =

ℎ∑

i=0

¼iPij , j ∈ {0, ..., ℎ}, (8)

ℎ∑

j=0

¼j = 1. (9)

Then we can get the average false positive rate

Pfp = ¼ℎ. (10)

The analytical result (10) allows us to numerically
examine the impact of the fundamental parameter
ℎ on the average false positive rate Pfp of the FS
detector. As an example, we compute the results for
a network with N = 10 nodes, and the results are
illustrated in Fig. 1. From the figure, we can observe
that a larger ℎ yields a smaller false positive rate, as
expected.
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6.2 Average Detection Delay

In this subsection, we analyze the average detection
delay denoted as E[TD], which is the average number
of samples observed from the moment that the tagged
node starts to misbehave until the misbehavior is
detected. With the Markov chain under the abnor-
mal condition (abnormal Markov chain), E[TD] can
be computed as the expected number of transitions
required for the state variable to hit state ℎ, starting
from the moment when the misbehavior starts. To
carry out the analysis, we need to find the transition
probabilities of the abnormal Markov chain and de-
termine the initial state of the FS detector when the
misbehavior starts.

6.2.1 Transition Probabilities under the Misbehavior

We consider a network consisting of two classes of
nodes. Class 1 includes the one misbehaving node
with a small minimum contention window CWmin

denoted as W 1, and class 0 includes all the normal
nodes with the standard minimum contention win-
dow denoted as W 0. According to the classic model-
ing approach for the 802.11 DCF [1], we consider that
each node independently accesses an idle channel for
transmission. Let pit denote the probability that a class
i (i ∈ 0, 1) node transmits at a random time slot and
pic denote the collision probability of a class i node.
Also recall that N is the number of nodes and m is
the maximum backoff stage. According to [1], we have
the following equations:
⎧
⎨
⎩

p0t =
2(1− 2p0c)

(1− 2p0c)(W
0 + 1) + p0cW

0(1− (2p0c)
m)

p1t =
2(1− 2p1c)

(1− 2p1c)(W
1 + 1) + p1cW

1(1− (2p1c)
m)

p0c = 1− (1− p1t )(1− p0t )
N−2

p1c = 1− (1− p0t )
N−1

(11)

from which the four parameters p0t , p1t , p0c and p1c can
be solved.

Note that a node can get a successful transmission
under the circumstance that there is no collision while
the node transmits. Thus from the solutions of (11), we

can obtain the probability that a node gets a successful
transmission at a random time slot:

p0s = p0t (1− p0c), (12)
p1s = p1t (1− p1c). (13)

We can then calculate the probability q̂s that a suc-
cessful transmission over the network is from the
malicious node as (14):

q̂s =
p1s

p1s + (N − 1)p0s
. (14)

Using q̂s in (1), we can obtain the distribution of In
for the misbehaving node; using this distribution in
(5)−(7), we can then compute the transition probabil-
ity matrix P̂ for the abnormal Markov chain.

It is worth noting that although we only include
two classes of nodes in the above analysis, the model
of (11) to (14) can be easily extended to cases where
multiple classes of misbehaving nodes with different
intensities of misbehavior exist. This will enable us to
analyze much more complicated misbehaving scenar-
ios. We will discuss this issue in Section 8.

6.2.2 Initial States
A natural thought of the initial state of Xn is 0 when
the misbehavior starts. However, this may not be the
case; before a malicious node starts to misbehave, it
can behave like a normal node and still affect Xn.
Thus Xn can be initially at any state following the
normal Markov chain except for state ℎ, as we do not
consider an already “alarmed” state as an initial state.

We can calculate the steady state probabilities of the
normal Markov chain according to (8) and (9). Since
we are interested in detection starting from an un-
alarmed state, under such a constraint the conditional
initial state probabilities should be

¼′
i =

¼i∑ℎ−1
i=0 ¼i

for i ∈ {0, ..., ℎ− 1}. (15)

6.2.3 Average Detection Delay
As we have various initial states, the average detec-
tion delay E[TD] should be calculated as the weighted
average of the expected numbers of transitions from
every initial state to state ℎ based on the transition
probability matrix P̂ for the abnormal Markov chain.

Let ¹iℎ, i ∈ [0, ℎ − 1], denote the expected number
of transitions for state i to state ℎ. According to [21],
the values of ¹iℎ can be solved from the equations

¹iℎ = 1 +
∑

r ∕=ℎ

P̂ir¹rℎ, i ∈ {0, ..., ℎ− 1} (16)

where P̂ir is the transition probability from state i to
r of P̂. Based on the solutions of (15) and (16), we can
obtain the average detection delay E[TD] as

E[TD] =

ℎ−1∑

i=0

¼′
i¹iℎ. (17)
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Fig. 2. Average detection delay.

The analytical result (17) allows us to numerically
examine the impact of ℎ on the average detection
delay E[TD]. As an example, we compute the results
for a network with N = 10 nodes, and the results
are shown in Fig. 2 with four misbehaving intensities
CWmin = 4, 8, 16 and 24, respectively. As we expect,
the curves in Fig. 2 show that a more intense mis-
behavior leads to a shorter detection delay. Also, we
observe that a smaller ℎ yields better performance in
average detection delay.
6.3 Missed Detection Ratio
In this subsection, we discuss the missed detection
ratio, denoted as Pmd. The FS detector exploits the
non-parametric CUSUM test. The missed detection
ratio is not often considered in the context of CUSUM
test due to its “non-stop until detection” property. We
however examine Pmd under a given detection delay
constraint D, which is of importance regarding real-
time detection.

The detection event happens only when Xn hits
state ℎ. Thus the missed detection ratio Pmd under
the delay constraint D is the summation of the prob-
abilities of Xn staying at a state other than ℎ at
time D. With the transition probability matrix P̂, the
missed detection ratio can be computed in an iterative
manner. Let the row vector P⃗ (j) = [P0(j), ⋅ ⋅ ⋅ , Pℎ(j)]
denote the probabilities of the state variable at step
j with 0 ≤ j ≤ D. The computation starts from the
initial states given in (15), setting

Pi(0) = ¼′
i for i ∈ {0, ..., ℎ− 1}, (18)

Pℎ(0) = 0. (19)

At each transition step j ∈ [0, D − 1], the state
probabilities are updated as

P⃗ (j) = P⃗ (j − 1) ⋅ P̂, (20)
Pℎ(j) = 0. (21)

At each step, Pℎ(j) is set to 0 for next step computa-
tion because we are interested in the missed detection
cases. The missed detection ratio under the delay
bound constraint D can be obtained as

Pmd =

ℎ−1∑

i=0

Pi(D). (22)
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Fig. 3. Missed detection ratio.

Fig. 3 demonstrates the missed detection ratios Pmd

of our analysis under the delay constraints D =
80, 100, 120 and 140, respectively, for a misbehaving
node with the moderate misbehavior of CWmin = 16.
We observe that the larger the delay constraint is,
the lower the missed detection ratio will be. In other
words, the probability of detection increases with a
cost of longer delay. Also, a smaller detection thresh-
old ℎ yields a lower missed detection ratio.

6.4 Configuration for Guaranteed Performance

The above theoretical analysis provides us a guideline
to configure the system parameter ℎ for guaranteed
performance in a target scenario. For each perfor-
mance metric, we can obtain the feasible ranges of
ℎ to satisfy the performance constraints. With the
intersection of the parameter ranges under all the con-
straints, a proper configuration of ℎ can be obtained
to meet the performance requirements of all the met-
rics. Moreover, once we determine the configuration
parameter, we can explicitly estimate the performance
measures given a misbehaving scenario. In practice, as
we do not have a priori knowledge of the misbehavior,
the analytical model allows us to conservatively con-
figure the system so that even the misbehavior with a
low intensity can be detected with good performance.
For example, if we select ℎ = 40 for a network with
N = 10, our analytical model indicates that, even for
the moderate misbehavior with CWmin = 16, we can
target a high level of performance with the average
false positive rate of 0.005, the average detection delay
of 31.8357 samples, and the missed detection ratio of
0.0141 with the delay constraint D = 100. In Section 7,
we will use simulation results to demonstrate that our
target performance measures are indeed achievable.

6.5 Detection with Network Size Change

In an 802.11 based wireless network, it is typical that
nodes are mobile and thus the number of nodes (i.e.,
the network size) changes from time to time. The
proposed FS detector is robust against such a scenario.
As we directly include the number of nodes N in the
detector design, when N changes, the detector can
adjust and respond in real time.
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Fig. 4 shows the average false positive rates Pfp

of the detector versus the number of nodes N , at
ℎ = 80. The threshold ℎ is intentionally set to be
greater than the maximum number of nodes to avoid
alarm being triggered by just one successful trans-
mission from the tagged node. As shown in Fig. 4,
there is a dent on the curve at N = 40 and Pfp

has a sharper increase when N gets greater than
40. This is because, when N ≤ 40, at least three or
more consecutive successful transmissions from the
tagged node are needed to drive Xn to ℎ from an
initial state of 0, raising a false alarm; however, when
41 ≤ N ≤ 70, it will take only two consecutive
transmissions to reach ℎ, which largely increases the
possibility of false positive. Furthermore, note that Pfp

does not monotonically increase with N and has an
upper bound of Pfp = 0.0055. The explanation is that,
when the number of nodes contending for the channel
becomes larger, the transmissions from a tagged node
are more likely to be interrupted by transmissions
from those non-tagged nodes, and the accumulation
of the detector Xn will be more aggressively offset by
such non-tagged nodes, thus resulting in a smaller
Pfp. If the target performance of Pfp ≤ 0.0055 is
allowed, we can see that the configuration ℎ = 80
satisfies the false positive performance requirement
even when N changes dynamically in a wide range.
Note that a typical 802.11 based wireless local area
network covers up to tens of users.

Fixing ℎ = 80, we now investigate the average
detection delay E[TD] of the detector for different
misbehavior intensities, indicated by the CWmin value
of a misbehaving node, with results shown in Fig. 5.
The misbehavior intensities with CWmin > 25 are
not included in our discussion, as their effects are
minimal. Practically, a misbehaving node needs to
choose more intense misbehavior, e.g., CWmin ≤ 16,
to gain more benefits from the network throughput.
From Fig. 5, we see that for misbehavior in this
range, the change of N does not affect E[TD] much.
The reason is that, when a misbehaving node grabs
the channel, very likely it will consecutively send a
certain number of packets, driving the detector to hit
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Fig. 5. Impact of network size change on average
detection delays at ℎ = 80.

the threshold. For a smaller value of N , it may just
take a couple of more samples for the detector to hit
the threshold (note that each transmission from the
tagged node increases the detector state by N − 1),
which only slightly increases the detection delay. With
less intense misbehavior (16 < CWmin ≤ 25), we do
observe obviously larger detection delays for a small
N . The reason is that, when the misbehaving intensity
is low, the accumulation procedure of Xn is more
often to be offset by transmissions from those non-
tagged normal nodes; for a small N , it will take even
more samples from the misbehaving node to raise the
alarm, leading to a longer detection delay.

It is noteworthy that the relationship between N
and detection delay in Fig. 5 is not rigorously mono-
tonic. Such phenomenon is due to two contradicting
factors: Given the CWmin, the misbehaving node will
get less transmissions when N gets larger and thus
less chances to accumulate Xn, potentially increasing
the detection delay; the increase of Xn (by a value of
N − 1) caused by one transmission from the misbe-
having node however becomes larger too, potentially
decreasing the detection delay. In summary, the re-
sults in Fig. 5 again demonstrate that the FS detector
with a fixed threshold (larger than N ) has a robust
performance for a typical misbehaving scenario, even
when the number of nodes in the network changes.

In a situation where a fixed constraint on Pfp is
imposed, we can dynamically calculate the ℎ value
corresponding to a certain N through the analytical
model. Further, if we do the calculation beforehand
and maintain a table of “ℎ versus N” values under
the given Pfp constraint, we can quickly adjust ℎ as
soon as changes on N are observed. Fig. 6 shows
the average detection delays E[TD] of the detector
for different misbehaving intensities, given a false
positive constraint as Pfp = 0.005. Similar to Fig. 5,
Fig. 6 shows that the detection delays under different
N are similar when the misbehavior is very intense.
Under a lower misbehaving intensity (i.e., a larger
CWmin), the detection delays increase more obviously
with the number of nodes, because a larger thresh-
old ℎ is required for a larger N to meet the false
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Fig. 6. Impact of network size change on average
detection delays at Pfp = 0.005.

positive requirement. However, the delay increase is
not dramatic. Even for CWmin = 25 and N = 40, it
only takes about 120 successful transmissions over the
whole network to detect the misbehavior.

6.6 Comparison with the CUSUM Detector in [19]
In order to show how we have improved in real-time
misbehavior detection, we compare the FS detector
to the detector developed in our preliminary work
[19], referred to as the “original CUSUM detector” for
convenience. The observation measure of the original
CUSUM detector is the number of successful trans-
missions of the tagged node in every M successful
transmissions over the whole network. It means get-
ting one observation sample for the original CUSUM
detector requires M successful transmissions, whereas
the FS detector will update state upon every success-
ful transmission over the network. Also, M needs to
be at least as large as the number of nodes N and
linearly increase with N to fairly count transmissions
from each node. Moreover, besides ℎ, there is another
parameter u in the original detector design, which
is the upper bound of the observation measure’s
expectation. To determine a proper u, we need to take
into account both the sample size M and the number
of nodes N , adding the complexity of the detection
system. In the FS detector, u is not present, which
leads to one less parameter impacting the detection
performance and thus makes parameter configuration
much simpler.

Fig. 7 shows the average detection delays of the two
detectors for different misbehavior intensities under
the same false positive constraint of Pfp = 0.005. Here
we consider the cases of N = 10 and N = 20. For
the FS detector, given the Pfp and N , the threshold ℎ
can be determined from the analytical model. With ℎ,
the detection delay for a given misbehaving intensity
can then be calculated and plotted in Fig. 7. We
intentionally configure the original CUSUM detector
for a small detection delay so the advantage of the FS
detector can be demonstrated more convincingly. The
sample size M for the original CUSUM detector is set
to its minimum value N (i.e., 10 and 20 for the two
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Fig. 7. Comparison with the original CUSUM detector
in [19] at Pfp = 0.005.

cases considered, respectively) in order to minimize
the impact of the observation window size on the
detection delay. With such an observation window
selection, on average one successful transmission from
each node can be expected in each window, i.e., u = 1.
Given the Pfp, N and u, the parameter ℎ can then be
determined from the analytical model in [19]. With ℎ
and u, the detection delay for a given misbehaving
intensity with the original CUSUM detector can be
calculated and plotted in Fig. 7.

As shown in Fig. 7, for the same N , the FS detector
shows clear advantages over the original CUSUM de-
tector, especially when the misbehavior becomes less
intense. Observing the delays of the original CUSUM
detector, we can see that the delays with N = 20
are roughly two times of the delays with N = 10
for almost all the misbehavior intensities. The fact
clearly indicates the impact of the observation win-
dow size on detection delay in the original CUSUM
detector. Another advantage of the FS detector is that
its detection delay curves are quite flat against the
misbehaving intensity and not much impacted by the
network size N , showing very robust performance.

7 SIMULATION RESULTS

7.1 Simulation Setup

We establish an 802.11 DCF based wireless network
consisting of 10 competing nodes (N = 10) and an
access point through ns-2 [22] simulation. We first
consider that the network works under the saturated
condition and every node sends packets with UDP
towards the AP. Then we include the TCP traffic in
our simulation to further analyze the performance
of the FS detector in more general scenarios. The
AP also acts as the detection agent which monitors
the transmissions from every competing node with
a separate FS detector. The nodes are located close
enough to sense the transmissions from each other
and thus avoid the hidden terminal problem. There is
1 misbehaving node among the 10 competing nodes,
which accesses the wireless channel using the binary
exponential backoff scheme but can manipulate its
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Fig. 9. Average false positive rate.

minimum contention window CWmin to any value
between 1 and 32.

Due to the conflicting nature of the three perfor-
mance metrics (average false positive rate, average
detection delay, and missed detection ratio), it can be
difficult to find the system configuration parameter
that achieves best performance at all fronts. Using our
analytical model, we find that, for N = 10, setting
the detection threshold ℎ = 40 can achieve a good
tradeoff among all the metrics (referring to Section
6.4). Therefore in our simulation, if not specified, we
set ℎ = 40 to further evaluate the performance of our
detection.

7.2 Robustness against Short-Term Unfairness
In an 802.11 network, a node that has just accom-
plished a successful transmission will have advan-
tages in grabbing the channel for next transmission
in a short period [13]. This is referred to as short-
term unfairness and is inherent to the 802.11 backoff
mechanism. Such an issue implies correlations among
the channel accesses, which impact the accuracy of
the transition probability calculation based on the
assumption of independent channel access. The sys-
tem configuration based on an inaccurate model can
lead to inaccurate detection results. In this section,
we study how the short-term unfairness affects the
performance of our detector.

We first examine the impact of short-term unfair-
ness on the distribution of the detector Xn under
the normal traffic condition. In Fig. 8, we present
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Fig. 10. Average detection delay with CWmin = 8.
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Fig. 11. Average detection delay with CWmin = 16.

the simulation results of the cumulative distribution
function (CDF) of Xn, compared with the analytical
CDF. Note that even though the analytical results are
based on the independent model of (1), the two curves
are still close to each other. We then examine the
average false positive rate Pfp versus ℎ, comparing
the analytical results with the simulation results in
Fig. 9. Again, despite a bigger gap when ℎ is smaller,
the Pfp curve obtained from simulations still largely
resembles the analytical one. The observations show
that our FS detector is robust against the impact of
short-term unfairness.

We then obtain the average detection delays E[TD]
under different misbehaving intensities. Figs. 10 and
11 present both the simulation and analytical E[TD]
curves versus ℎ for CWmin = 8 and CWmin = 16,
respectively. The closeness of the two curves in both
cases again confirms the robustness of the FS detector
against the short-term unfairness.

Technically, the FS detector by nature can mitigate
the impact due to the short-term unfairness. In the
normal situation, every node in the network has the
same opportunity to experience a short period of
advantages in transmissions. At a sampling moment,
if the tagged node under observation is accessing the
channel more aggressively due to short-term unfair-
ness, it will increase the detector state value more
aggressively according to (2), tending to be false
positive. However, if at other sampling moments,
those non-tagged nodes are accessing the channel
more aggressively, it will in turn decrease the detector
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TABLE 1
Comparison of Analytical and Simulation Results with

N = 10, ℎ = 40, D = 100

Pfp E[TD] Pmd

Analysis 0.005 31.8357 0.0141
Simulation 0.0076 28.5744 0.0255
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Fig. 12. Comparison with the detection schemes in [3].

state value more aggressively and mitigate the false
positive effect. Therefore, as an aggregate effect, the
FS detector only degrades slightly in the false posi-
tive performance. In the misbehaving situation, extra
channel access (in addition to that resulting from the
backoff misbehavior) due to the short-term unfairness
effect in fact benefits the misbehavior detection, with
the detector being driven to hit the threshold ℎ sooner,
as shown in Figs. 10 and 11. We did design a shuf-
fling mechanism based on the similar idea as that
applied in [19] to address the impact of the short-
term unfairness, and found that it would sacrifice a
lot in detection delay to achieve just a moderate gain
in mitigating false positive rate. Thus according to the
theoretical and simulation investigations given above,
we decide to apply the FS detector without an extra
mechanism for the short-term unfairness issue.

7.3 Performance Guarantee
Given the configuration parameter ℎ = 40, we com-
pare the target performance measures with the sim-
ulation results under the same setting, shown in
Table 1, to examine whether the target performance
is guaranteed. We can see that simulation results are
very close to the target values in all three performance
metrics. The small gap between the values is largely
due to the variance in the observation samples; also
the effect of the short-term unfairness is not 100%
overcome according to Figs. 8 and 9. Considering such
a small gap, in practice we can on purpose select
configuration parameters to conservatively provision
the detection performance.

With the same parameter configuration as above,
we compare our FS detector to the sequential K-S test
and the optimal SPRT for 802.11 backoff misbehavior
detection used in [3] in Fig. 12. The sample used

in those solutions is collected every successful trans-
mission of the tagged node, whereas in our scheme,
the sample is collected every successful transmission
from any node in the network. The average detection
delays in terms of the number of successful trans-
missions from the tagged node for different detection
schemes are compared in Fig. 12. For a fair com-
parison, we map our samples (the total number of
successful transmissions over the network) to that
used in [3]. For such a mapping, we only need to
count the number of successful transmissions from the
tagged node within the total successful transmissions.
Also note that the desired false positive rate in [3] is
fixed at Pfp = 0.05, which is one order larger than
our target 0.005 as given in Table 1. Even with a
much more strict constraint on Pfp, Fig. 12 shows that
our detector has comparative detection delays against
high intensities of backoff misbehavior and becomes
superior to all other schemes as the misbehavior turns
less intense.

It is interesting to discuss why our FS detector has
better performance even than the optimal SPRT (when
the misbehaving intensity is not high) in [3]. An opti-
mal SPRT has the “optimal” performance only when
the normal behavior distribution could be accurately
obtained. However, to establish the normal behavior
distribution, the detectors in [3] need to first estimate
the collision probability over the 802.11 channel. In [3],
there are two aspects of inaccuracy in estimating the
collision probability, which degrade the performance
of false positive rate and detection delay, respectively.

The first aspect of inaccuracy in [3] is that the col-
lision probability is estimated from only tens of sam-
ples, over which the variance may lead to overestimat-
ing the collision probability. The behavior monitored
by the detector is the idle time between consecutive
successful transmissions; an overestimated collision
probability will lead to an overestimated idle time
(longer than its real value). With such an estimation
error by the detector, a normal idle time observed
will appear smaller than the “thought-to-be” normal
behavior and thus misunderstood as misbehaving.
That is, the overestimation of the collision probability
leads to a higher false positive rate.

The second aspect of inaccuracy is that, according
to the IEEE 802.11 model, a conditional collision
probability (given that the tagged node is sending
a packet) should be used to characterize the backoff
procedure and further estimate the distribution of the
idle time between consecutive successful transmis-
sions. The study in [3] however uses an unconditional
collision probability estimated over all nodes to ap-
proximate the conditional one. Regarding the misbe-
having node, the unconditional collision probability
will be an underestimate of the conditional one. The
conditional collision probability associated with the
tagged misbehaving node is determined by transmis-
sions from other normal nodes. When estimating with
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Fig. 13. Average detection delay for TCP traffic.

an unconditional collision probability, transmissions
from the misbehaving node are also included in the
estimation [3]; note that many transmissions from
the misbehaving node will not experience collisions
due to the misbehaving node’s aggressive access to
the channel. Thus, the collision probability will be
underestimated, which then makes the detector to un-
derestimate the normal idle time between consecutive
successful transmissions. Such underestimation of the
normal model makes the misbehavior deviation less
obvious and incurs a longer time for detection.

7.4 Performance with UDP and TCP Traffic

We also consider scenarios where TCP traffic exists
in the network. Fig. 13 shows the average detection
delay of a misbehaving node versus the misbehaving
intensity in a network of 10 nodes. The detection
threshold ℎ = 40. We compare the detection delays in
the two scenarios that all the nodes send TCP traffic
or saturated UDP traffic to the AP, respectively. As
shown in Fig. 13, in most cases, the detection delay
in the TCP scenario is larger than that in the UDP
one, especially when the misbehavior is more intense.
The reason is that TCP multiplicatively decreases the
transmission rate upon a packet loss due to its con-
gestion control mechanism; the impact of congestion
control is more obvious in wireless networks where
collisions are common. The congestion control mech-
anism by nature mitigates the selfish misbehavior.
Aggressive transmissions will lead to more collisions,
which in turn decreases the sending rate through the
congestion control. Thus, it takes a longer time to
detect (compared to the UDP case) the misbehavior
due to the mitigating effect of the congestion control.
With a low misbehaving intensity (CWmin > 20), the
congestion control effect applies more to the normal
nodes, where the detection delay will be shorter than
that in the UDP case. In Fig. 13, we also plot the 95%
confidence interval, measured from a large number of
detections (in the order of 106), which demonstrates
that TCP congestion control brings a high degree of
dynamics to the system.

A more general scenario would be a wireless net-
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Fig. 14. Detection with TCP/UDP hybrid traffic.

work consisting of both TCP and UDP nodes.2 There
are three possible cases. 1) All the nodes have a
normal behavior. In this case, the FS detector will
have a high false positive rate to indicate a certain
normal UDP node as a misbehaving node, since the
throughput of UDP nodes will overwhelm those TCP
ones. 2) A misbehaving UDP node exists. Note that
when both UDP and TCP flows exist, it is impossible
for a TCP node to aggressively grab more throughput
due to the congestion control. As a misbehaving UDP
node will easily overwhelm those normal TCP nodes,
the detection delay of a misbehaving node will be
even shorter than that in an all-UDP case. 3) To
avoid being detected, a smart misbehaving node may
establish a TCP connection to the AP, but does not
implement the congestion control mechanism (i.e.,
actually transmit according to UDP).

For robust detection performance in the complex
scenario when both UDP and TCP traffic flows exist,
we design a dual-detector implementation as shown
in Fig. 14. FS detector 1 monitors traffic from all the
nodes; if a detection event happens, detector 1 further
checks whether the tagged node claims to use TCP
or UDP. If it claims to use TCP, detector 1 can then
determine that it is a smart misbehaving node actually
using UDP (case 3 mentioned above); if it claims to
use UDP, detector 1 turns to listen to the decision from
FS detector 2 (to avoid false positive in case 1). FS
detector 2 starts simultaneously with detector 1 but
monitors only the traffic from the UDP nodes. When
detector 2 identifies misbehavior from a UDP node,
it sends the detected node ID to detector 1. If this
detected node ID matches that alarmed by detector
1, the dual-detector system will then determine that
the node is misbehaving (case 2). We run simulations
to verify the performance of the dual-detector. For
example, in a network of 10 nodes where 5 nodes
use TCP and the other 5 nodes use UDP, the average
false positive rate over a normal UDP node is 0.0047.
Also, for the moderate misbehavior of CWmin = 16,
the average detection delay of a misbehaving node is
18.1953 when it lies to be a TCP node. The detection
delay increases to 36.4728 (for confirmed detection in
both detectors) when the attacker is honest with its

2. Without loss of generality, we consider the situation that some
nodes have a UDP flow and others have a TCP flow. If a node
has both UDP flows and TCP flows, in a saturated situation, the
aggregate traffic behaves similar to the UDP traffic.
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having nodes.

UDP behavior, which is similar to that in the all UDP
case listed in Table 1.

8 DISCUSSION

8.1 Detection of Multiple Misbehaving Nodes

In this section, we discuss how our analytical model
can be extended to the cases where multiple classes
of malicious nodes with different intensities of misbe-
havior exist. The key to the analysis is to obtain the
abnormal Markov chain, which in fact is determined
by the probability that a successful transmission over
the network is from the tagged malicious node.

Consider a network of N nodes, k of which are
malicious and the rest are normal. Suppose that ma-
licious node i sets its minimum contention window
CWmin as W i and all the N − k normal nodes use
the standard minimum contention window denoted
as W 0. We can expand (11) to have the following
equations:
⎧
⎨
⎩

p0t =
2(1− 2p0c)

(1− 2p0c)(W
0 + 1) + p0cW

0(1− (2p0c)
m)

...

pkt =
2(1− 2pkc )

(1− 2pkc )(W
k + 1) + pkcW

k(1− (2pkc )
m)

p0c = 1−
k∏

i=1

(1− pit)(1− p0t )
N−k−1

...

pkc = 1−
k−1∏

i=1

(1− pit)(1− p0t )
N−k

(23)

From the solutions of (23), we can obtain the prob-
ability that a node gets a successful transmission at a
random time slot:

p0s = p0t (1− p0c), (24)
...

pks = pkt (1− pkc ). (25)

Then we can calculate the probability qls that a success-
ful transmission over the network is from the tagged
malicious node l with CWmin = W l as

q̂ls =
pls∑k

i=1 p
i
s + (N − k)p0s

. (26)

Using qls in (26), we can obtain the transition proba-
bility matrix of the abnormal Markov chain P̂l; using
P̂l and initial states of the detector when misbehavior
starts, which are determined in the same way as in
Section 6.2.2, we can analyze average detection delay
and missed detection ratio for the tagged malicious
node l accordingly.

We consider an example that there are two misbe-
having nodes in a network of 10 nodes, one setting
its minimum contention window as W 1 and the other
as W 2. Fig. 15 plots the average detection delays to
identify the misbehaving node 1, denoted as E[TD]1,
under different misbehaving intensity pairs (W 1,W 2).
Note that even in this simple case the two malicious
nodes are competing with each other. There is a trade-
off between the two nodes. Certainly it takes longer to
detect one malicious node if the other chooses more
intense misbehavior. It will be an interesting problem
to determine how the multiple malicious nodes can
find certain misbehaving strategies to collaboratively
maximize their collective benefit from the network
throughput while avoiding being detected as long
as possible. In our future work, we will carry out
more in-depth studies of the scenario with multiple
misbehaving nodes.

8.2 Misbehaviors beyond CW Manipulation
Beyond just manipulating CWmin values, there can
be more sorts of strategic misbehavior. As nowadays
virtualization technologies are common, a malicious
node can create multiple virtual adapters associated
with one physical adapter. Combining this with the
backoff misbehavior, the malicious node can initiate
sybil attacks to gain more benefits from the network
and still remain undetected. Further, the malicious
node can even spoof the MAC addresses of well-
behaved nodes and then start misbehaving. This may
lead to false accusation of well-behaved nodes if the
FS detector is directly applied. To address these issues,
based on the fact that every node needs to contact
the AP initially to join the network, one approach
is to let the AP impose authentication to every node
joining the network to ensure that each MAC address
is associated with exactly one physical node. After the
authentication, the FS detector can then take actions
to monitor the node. We will conduct more in-depth
studies in our future work.

9 CONCLUSION

In this paper we propose a novel fair share (FS)
detector for real-time backoff misbehavior detection
in IEEE 802.11 based wireless networks. Also, we
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develop a Markov chain based model to theoretically
analyze the detection performance of the scheme.
While most existing work for backoff misbehavior
detection depends on heuristic parameter configura-
tion and experimental performance evaluation, we are
able to use our model for a quantitative study to
achieve guaranteed detection performance in terms
of average false positive rate, average detection delay
and missed detection ratio. Moreover, we present
simulation results that confirm the accuracy of our
theocratical analysis and demonstrate the robustness
of the FS detector. For our future work, we plan to sys-
tematically study the generic scenario with multiple
misbehaving nodes in a multi-hop wireless network.
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