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An Optimization Framework for
Balancing Throughput and Fairness in
Wireless Networks With QoS Support
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Abstract— Quality-of-service (QoS) provisioning, high sys-
tem throughput, and fairness assurance are indispensable for
heterogeneous traffic in future wireless broadband networks.
With limited radio resources, increasing system throughput and
maintaining fairness are conflicting performance metrics, leading
to a natural tradeoff between these two measures. Balancing
system throughput and fairness is desired. In this paper, we
consider an interference-limited wireless network, and derive a
generic optimization framework to obtain an optimal relation-
ship of system throughput and fairness with QoS support and
efficient resource utilization, by introducing the bargaining floor.
From the relationship curve, different degrees of performance
tradeoff between throughput and fairness can be obtained by
choosing different bargaining floors. In addition, our framework
facilitates call admission control to effectively guarantee QoS of
multimedia traffic. The solutions of resource allocation obtained
from the optimization framework achieve the Pareto Optimality,
demonstrating efficient use of network resources.

Index Terms— Fairness, optimization, Pareto optimality,
quality-of-service (QoS), throughput.

I. INTRODUCTION

FUTURE wireless broadband networks are expected to
support ubiquitous communications and mobile comput-

ing, the notion of which has been attracting a plethora of
attention from academia and industry. Ubiquitous wireless
access can be realized in various practical scenarios, namely
home networking, office networking, and city networking
[1]. Compared with the traditional networking dependent
on cables, a wireless network is faster in deployment with
lower cost, facilitated by avoiding time-consuming and costly
operations such as land construction and cable placement. The
wireless networking paradigm provides not only a viable, but
also economical solution for both peer-to-peer applications and
Internet access. In order to fully exploit promising wireless
technologies, efficient and effective radio resource manage-
ment in wireless networks is crucial.

In wireless networks, system throughput is usually a com-
mon performance metric [2]. However, next-generation wire-
less networks such as wireless mesh networks are anticipated
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to support multimedia traffic (e.g., voice, video, and data
traffic). With heterogeneous traffic, quality-of-service (QoS)
provisioning and fairness support are also important. With
limited available radio resources, increasing system through-
put and maintaining fairness are usually conflicting with
each other [3], leading to a natural tradeoff between these
two performance measures. In particular, balancing system
throughput and fairness with QoS support and high resource
efficiency is necessary, depending on different application-
specific scenarios [1].

In literature, only limited work addresses the optimal rela-
tionship of throughput and fairness [4]–[13]. To the best of
our knowledge, there is no widely accepted unified frame-
work to effectively attain different degrees of performance
tradeoff between throughput and fairness with QoS support
and efficient resource utilization, which is the motivation of
this research. With a focus on interference-limited wireless
networks, the key contribution of this paper is to derive a
unified optimization framework to obtain the optimal relation-
ship (i.e., tradeoff curve) of system throughput and fairness
with QoS support. By introducing a bargaining floor, the
relationship curve is obtained by solving the optimization
problem iteratively. Different degrees of performance tradeoff
between throughput and fairness can be achieved by simply
choosing appropriate values of the bargaining floor. Given an
application of interest, the desired operating tradeoff can be
determined. Resource utilization is efficient, which is verified
by game theory, achieving Pareto Optimality [14].

To effectively provision QoS of multimedia traffic, call
admission control is vital to guarantee the QoS requirements of
admitted calls. Whether a new incoming call should be admit-
ted or rejected is contingent upon the way how the resources
are allocated to wireless links and how much resources are left
in the network. Contributing to the criterion of call admission,
our optimization framework plays an important role in call
admission control so as to facilitate the operation of balancing
throughput and fairness.

The rest of the paper is organized as follows. Related work
is discussed in Section II. The system model is given in
Section III. The optimization problem formulation is presented
in Section IV. Efficiency of the proposed resource allocation
is addressed in Section V. Numerical results are given in
Section VI. Practical implementation issues are discussed in
Section VII. Finally, conclusion is drawn in Section VIII.
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II. RELATED WORK

In the literature, utility optimization is a tool to measure
system performance subject to certain constraints (e.g., QoS
requirements) [4]–[7], where a utility function is described
as a measure of user satisfaction. Proportional fairness can
be obtained by choosing suitable utility functions (e.g., log-
arithmic functions) [4]. Other performance measure (such as
throughput) can also be incorporated into this optimization for-
mulation [6]. With different problem formulations (i.e., utility
functions), different optimal solutions can be obtained (e.g.,
optimal throughput). Pricing schemes [4] can be employed
to achieve a tradeoff between throughput and fairness, to a
certain extent. However, the utility functions used in these
work may not have any physical meaning. How to find a
meaningful utility function with an appropriate pricing scheme
can also be problematic. In addition, most of the current work
assumes that the utility functions can be separable in the dual
problem [4]–[7], which may not always be the case, especially
for interference-limited systems such as code-division multiple
access (CDMA) and ultra-wideband (UWB) systems, meaning
that applying existing approaches (e.g., [7]) generally results
in suboptimal solutions. In the interference-limited systems,
optimality should be obtained by considering all (user) utility
functions together.

Ideal (weighted max-min) fairness can be obtained by
generalized processor sharing (GPS) [8], [9] or its variants
[10], where all nodes in the network share the total resources.
With GPS, the resource allocated to each node is dependent
on its own weight, whereby each node can have a fair share
of resources. However, the notion of a weight is an abstract
concept and the question of how to relate QoS requirements to
the weight effectively remains unsolved. In GPS, even though
all the weights or QoS requirements are already satisfied,
only (weighted max-min) fairness is considered. Further, the
throughput performance of GPS needs further investigation.

Although some research aims at the tradeoff between
throughput and fairness in telecommunications networks, only
heuristic schemes are proposed without any optimality consid-
eration [11]–[13]. Thus far, only limited relationship of system
throughput and fairness is addressed. Joint consideration of
both performance metrics and hence a unified framework
attaining different degrees of performance tradeoff between
them with QoS support are desired. Further, with scarce radio
resources, efficient resource utilization is vital, which can be
verified by game theory [14]. All these aspects are addressed
in this paper.

III. SYSTEM MODEL

We consider a generic system model which is an
interference-limited wireless network. We assume that the
channel gains are known in advance or can be estimated
accurately via pilot symbols. Let Rd

m denote the effective
bandwidth of a call on the mth link, which is the minimum
rate required to satisfy the QoS requirements and depends
on source traffic characteristics [16], [17]. Let Rm(a) denote
the actual transmission rate of the mth link where a =
(a1, a2, ..., am, ..., aM ) and am is the power scaling factor
of the mth link’s transmitter, i.e., am ∈ [0, 1], and M the

total number of active links in the network. For simplicity,
the actual transmission rate of the mth link is given by [18]

Rm(a) = B log2 (1 + γm) (1)

where B is the channel bandwidth and γm is the signal-to-
interference-plus-noise ratio of the mth link. In (1),

γm =
GmmPmam

σ
∑

n�=m GmnPnan + η
(2)

where Pm is a maximum transmit power level of the mth

link’s transmitter, Gmn is the channel gain from the nth link’s
transmitter to the mth link’s receiver, σ is the cross-correlation
factor between any two signals, i.e., σ ∈ (0, 1], and η is
the background noise power. Notice that (1) can be easily
extended to incorporate bit-error-rate (BER) requirements,
coding and modulation schemes to compute the attainable
channel transmission rate (or capacity) [19]. This attainable
channel transmission rate is equal to the achievable throughput
at the physical layer. In practice, the throughput (or goodput)
obtained at the medium access control layer (and higher
layers) is usually lower than the channel transmission rate
due to the overhead of packetization, medium access control,
etc. Given all the details of system parameters, the actual
throughput can be computed from the channel transmission
rate.

In order to effectively balance system throughput and fair-
ness, call admission control is indispensable, which can be
contingent on our optimization framework (to be discussed in
Section IV). The call admission routine1 is invoked whenever
a new call arrives. For each incoming new call, it is admitted
as long as there exists a feasible solution of the optimization
problem, meaning that the QoS requirements (i.e., in terms
of effective bandwidth) of this new call and all other calls
in service can be satisfied. If there is no feasible solution
of the optimization problem, the new call is rejected due to
insufficient resources available to meet its QoS requirements.
In other words, the criterion of call admission is tantamount to
the feasibility of the solution of our optimization framework.
With the call admission control in place, the QoS requirements
of all admitted calls can be guaranteed and the operation of
balancing throughput and fairness can be carried out effec-
tively.

Given that the QoS requirements can be met, the network
performance can be further improved for increasing system
throughput and/or maintaining (weighted max-min) fairness,
utilizing the resources efficiently. In this research, the notion
of weighted max-min fairness is taken as the fairness per-
formance of interest, which corresponds to the ideal fairness
achieved by the GPS. A summary of important symbols used
in this paper is given in Table I.

IV. OPTIMIZATION PROBLEM FORMULATION

In this section, we first consider two optimization problem
formulations, namely system throughput optimization and

1Notice that routing is involved in the call admission control. Particularly,
the tasks of QoS routing include 1) route discovery; 2) call admission control
over each link; and 3) route repair. Therefore, which link a call is to traverse
along can be determined [15].
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TABLE I

SUMMARY OF IMPORTANT SYMBOLS

Symbol Definition

Rd
m effective bandwidth of a call on the mth link

Rm(a) actual transmission rate of the mth link

Qm(a) utility function (i.e., extra throughput obtained) of the mth link, i.e., Qm(a) = Rm(a) − Rd
m

wm weighting factor of the mth link, i.e., wm > 0

Pm maximum transmit power level of the mth link’s transmitter

Gmn channel gain from the nth link’s transmitter to the mth link’s receiver

am power scaling factor of the mth link’s transmitter, i.e., am ∈ [0, 1]

γm signal-to-interference-plus-noise ratio of the mth link

σ cross-correlation factor between any two signals, i.e., σ ∈ (0, 1]

η background noise power

M total number of active links in the network

B channel bandwidth

J bargaining floor, i.e., J ∈ [0, J∗], where J∗ is the maximum value of J

D deviation of minm {wmQm(a)} from J∗, i.e., D = |J∗ − minm {wmQm(a)}|
U measure of system throughput, i.e., U ∈ [0, 1]

V measure of fairness, i.e., V ∈ [0, 1]

W shaped Jain’s fairness index, i.e., W ∈ [0, 1]

weighted max-min fairness optimization. Next, the generic
optimization problem formulation with system throughput and
fairness consideration is presented. For the system throughput
optimization, the optimization problem is given by

max
a

{
M∑

m=1

Rm(a)

}
(3)

subject to Rm(a) ≥ Rd
m, 0 ≤ am ≤ 1,∀m (4)

where a = (a1, a2, ..., am, ..., aM ) is the optimization vari-
able. In fact, (3) can be rewritten as

max
a

{
M∑

m=1

(
Rm(a) − Rd

m

)}
(5)

as the optimality still maintains for a linear-shifted objective
function [20]. The system throughput optimization problem
(STOP) can be rewritten as

max
a

{
M∑

m=1

Qm(a)

}
(6)

subject to Qm(a) ≥ 0, 0 ≤ am ≤ 1,∀m (7)

where Qm(a) = Rm(a) − Rd
m. The physical meaning of

Qm(a) is the amount of extra resources allocated to (i.e.,
excess throughput obtained by) the mth link. As a comparison,
Qm(a) can be viewed as the utility function of user m in
the conventional utility maximization [4]–[6], as Qm(a) of
user m is: 1) increasing; 2) strictly concave; and 3) twice
differentiable (i.e., continuous) on am. Then, the interpretation
of (6) is to achieve social optimality (i.e., maximum of total
utility functions). However, in our case, the utility functions
are not separable in the dual problem as Qm (a) only increases
with am but not over a. Consider the following (partial) dual

problem [5]:

min
λ�0

D(λ) (8)

where λ = (λ1, λ2, ..., λm, ..., λM ) is a set of Lagrange
multipliers and

D(λ) = max
a

{∑
m

Qm(a) +
∑
m

λmQm(a)

}
. (9)

Suppose that the optimality still maintains when each (user)
utility function, Qm(a), is optimized separately. Intuitively,
each user m will simply choose the maximum power scaling
factor, i.e., am = 1,∀m. In most cases, due to the cross-
interference (i.e., σ �= 0), the overall result will not contribute
to the maximum value of (6), though Nash Equilibrium is
achieved [14]. Optimizing individual user utility function
separately may not always result in the maximal solution of
the STOP, as in general from (9),

D(λ) = max
a

{∑
m

Qm(a) +
∑
m

λmQm(a)

}
(10)

= max
a

{∑
m

(1 + λm) Qm(a)

}
(11)

�=
∑
m

max
am

{(1 + λm) Qm(a)} . (12)

Thus, the solution space (i.e., resource allocation) is not nec-
essarily the same as those proposed in the literature (e.g., [5]).
Obtaining the optimal solution requires a joint consideration
of all user utility functions, meaning that existing solutions
cannot be directly applied.

For the weighted max-min fairness optimization problem
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(WMMFOP), the corresponding formulation is given by [21]

max
a

{
min

m
{wmQm(a)}

}
(13)

subject to Qm(a) ≥ 0, 0 ≤ am ≤ 1,∀m (14)

where wm is a weighting factor of the mth link, i.e., wm > 0,
which indicates the unwillingness of obtaining extra allocated
resources, i.e., the smaller the value of wm, the more eager
is the mth link to obtain more extra resources. The use of
wm is necessary for effective and efficient resource allocation
in wireless networks with heterogeneous traffic (e.g., voice,
video, and data traffic). For example, for voice traffic, after its
effective bandwidth requirement is satisfied, allocating extra
resources to it may be wasteful as the quality of signal
reception is already good, and hence this traffic should be
assigned a larger weighting factor. On the other hand, a
smaller weighting factor should be assigned to data traffic, as it
demands more throughput even though its effective bandwidth
requirement is already met. With different weighting factors,
different traffic classes can be differentiated. Notice that the
meaning of the weighting factor wm of our interest is different
from that in GPS.

Proposition 1: The set of feasible weighted utilities (i.e.,
wmQm(a),∀m) in the WMMFOP has the solidarity property
[21].

Proof: Suppose that the feasible resource allocation
solution is a∗. Without loss of generality, we assume that there
exists an n value such that Qn(a∗) > 0 (i.e., a∗

n > 0), where
n �= m [21]. For a particular timeslot t, over which the mth

and nth links are to be active, given the resource allocation
solution a∗, the values of their weighted utilities are to be
wmQm(a∗) and wnQn(a∗), respectively. Let lt denote the
length of the timeslot t, i.e., lt > 0. Similar to [21], it is
possible to partition the slot into three minislots, namely t1,
t2, and t3 with positive durations lt1 , lt2 , and lt3 , respectively,
such that lt1 + lt2 + lt3 = lt. Note that the choice of how
to determine these values is arbitrary. During t1, the resource
allocation a is chosen to be the same as that in timeslot t.
During t2, the same allocation solution is kept as in t1, except
an = 0. During t3, we set an = 0, and am is adjusted until
the interference experienced by other active links is larger than
that in the original timeslot t, if possible, otherwise, we set
am = 1.

In this new resource allocation, compared with the weighted
utilities obtained in the original resource allocation in timeslot
t, all the links excluding the mth and nth links have the
same or higher weighted utilities in t1 and t2, respectively. In
t3, their weighted utilities can be higher, the same, or lower,
depending on the value of am. Since the partitioning into t1,
t2, and t3 is entirely arbitrary, it is possible to choose their
lengths lt1 , lt2 , and lt3 so that there exist small εm (> 0)
and εn (> 0) such that the weighted utility of the mth link
increases by at most εm and the weighted utility of the nth

link decreases by at most εn, while the rest of the active links
have the same or higher weighted utilities.

Let wmQm(ã) and wnQn(ã) denote the newly obtained
weighted utilities of the mth link and the nth link, respectively.
We can now acquire the following inequalities: wmQm(a∗) <
wmQm(ã) < wmQm(a∗) + εm and wnQn(a∗) − εn <

wnQn(ã) < wnQn(a∗). Therefore, the value of wmQm(a)
can be increased by at most εm by decreasing the value of
wnQn(a) by at most εn. And,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...
wmQm(ã)
wnQn(ã)

...
wkQk(ã)

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
wmQm(a∗)
wnQn(a∗)

...
wkQk(a∗)

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
0
εn

...
0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
εm

0
...
0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
∑

k �=m,n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
0
0
...
εk

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

where εk > 0,∀k �= m,n. Since all wmQm(ã), ∀m, belong
to the feasible set (i.e., Qm(ã) ≥ 0, ∀m), by the definition
of solidarity [21], the set of feasible weighted utilities in the
WMMFOP has the solidarity property.

In fact, the WMMFOP can be transformed into [20]

max
a

L (16)

subject to wmQm(a) ≥ L,∀m. (17)

Therefore, the WMMFOP can be rewritten as follows:

max
a

L (18)

subject to wmQm(a) ≥ L, 0 ≤ am ≤ 1,∀m. (19)

With the solidarity property, at the optimal point, all
wmQm(a), ∀m, are to be equal, and the maximum value of L
is unique in WMMFOP [21]. Let J∗ and â denote the optimal
solutions (i.e., maximal L and optimal a) of the WMMFOP. If
the constraints wmQm(a) ≥ J∗,∀m, are added to the STOP,
the modified STOP becomes

max
a

{
M∑

m=1

Qm(a)

}
(20)

subject to wmQm(a) ≥ J∗, 0 ≤ am ≤ 1,∀m. (21)

Proposition 2: The optimal solution â obtained from the
WMMFOP is also the optimal solution for the modified STOP.

Proof: Suppose that there exists another solution ã such
that

∑M
m=1 Qm(ã) >

∑M
m=1 Qm(â). It means that there

exists some m such that wmQm(ã) > J∗ within the feasible
region. In the WMMFOP, if for some m, wmQm(ã) > J∗, J∗

can be increased by decreasing the value of ãm or increasing
the value of ãn or both, for n �= m, within the feasible
region until it reaches the maximal value, say J̃ . However,
it contradicts to the statement that J∗ is the maximal value
obtained from the WMMFOP. Therefore, no such a solution ã
exists. The optimal solution â obtained from the WMMFOP
is also the optimal solution for the modified STOP.

With the new constraint set, the solution a obtained from the
modified STOP not only achieves weighted max-min fairness,
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but also optimizes the system throughput. Therefore, to bridge
the system throughput and fairness performance measures
together, we introduce a parameter called bargaining floor,
denoted by J , where J ∈ [0, J∗] and J∗ is solution (i.e., the
maximal value) of the WMMFOP. Motivated by Proposition
2, we propose the generic optimization problem (GOP), which
is given by

max
a

{
M∑

m=1

Qm(a)

}
(22)

subject to wmQm(a) ≥ J, 0 ≤ am ≤ 1,∀m. (23)

Clearly, the solutions of the GOP for maximal system through-
put are obtained when J = 0 while that for maximal (weighted
max-min) fairness when J = J∗, where J∗ is obtained from
the WMMFOP. In this research, our focus is not to solve
the GOP. Instead, we employ it as a unified framework for
deducing the optimal relationship between system throughput
and fairness with QoS support. Let a∗ be the optimal solution
obtained from the GOP.

Proposition 3: The system throughput (i.e.,∑M
m=1 Qm(a∗)) is a non-increasing function of bargaining

floor J .
Proof: When J increases (decreases), the feasible region

of a in the GOP shrinks (expands). For 0 ≤ J1 ≤ J2 ≤ J∗, let
a∗
1 and a∗

2 denote the optimal solutions of the GOP with J1

and J2, respectively. The feasible region of a of the GOP with
J2 is only a subset of that with J1. Thus,

∑M
m=1 Qm(a∗

1) ≥∑M
m=1 Qm(a∗

2) and hence the system throughput does not
increase with the value of J .

Corollary 1: The minimum value of wmQm(a∗) (i.e.,
minm {wmQm(a∗)}) is a non-decreasing function of J .

Proof: Let J∗ be the solution of WMMFOP and a∗
1 be

the optimal solution of the GOP with J1, where 0 ≤ J1 ≤ J∗.
For 0 ≤ J1 < J2 ≤ J∗, consider the following two cases:

Case 1: If the solution a∗
1 is feasible for the GOP with J2,

from Proposition 3, a∗
1 is also the optimal solution

for the GOP with J2. Hence, the minimum value of
wmQm(a∗) is the same for the GOP with J1 and
J2.

Case 2: If the solution a∗
1 is not feasible for the GOP with

J2, it means that there exists some m such that
wmQm(a∗

1) < J2 and hence minm {wmQm(a∗
1)} <

J2. Thus, a∗
1 is an infeasible solution for the GOP

with J2. In addition, suppose that a∗
2 is the optimal

solution for the GOP with J2, i.e., wmQm(a∗
2) ≥

J2,∀m. Hence, minm {wmQm(a∗
2)} ≥ J2 >

minm {wmQm(a∗
1)}.

By combining the above two cases, minm {wmQm(a∗
2)} ≥

minm {wmQm(a∗
1)} and hence the minimum value of

wmQm(a∗) (i.e., minm {wmQm(a∗)}) does not decrease with
the value of J .

Theorem 1: The system throughput (i.e.,
∑M

m=1 Qm(a∗))
does not increase with J , but the minimum value of
wmQm(a∗) (i.e., minm {wmQm(a∗)}) does not decrease with
J .

Proof: By Proposition 3 and Corollary 1, it is proved.

Corollary 2: A relationship between the system throughput
and weighted max-min fairness performance can be achieved
by solving the GOP with different values of J .

Proof: From Theorem 1, for J = 0 the solution obtained
from the GOP corresponds to the maximal system throughput,
while for J = J∗ the solution obtained from the GOP
corresponds to the maximal weighted max-min fairness per-
formance. When J increases from zero, the solution obtained
from the GOP can refer to decreased system throughput and
increased fairness performance. Therefore, the performance
tradeoff and hence a desired relationship between the system
throughput and weighted max-min fairness performance can
be achieved by solving the GOP with different values of J ,
i.e., J ∈ [0, J∗].

From the perspective of network design, with a limited
amount of resources, improving fairness performance will
reduce the system throughput, which matches with the per-
spective of Corollary 2. With different values of J , the tradeoff
curve of system throughput and fairness can be obtained.
Thus, the GOP should be solved with different values of J
iteratively. The iterative procedure to obtain the tradeoff curve
is described below:

Step 1: Find J∗ by solving the WMMFOP;
Step 2: Set J = 0 and solve the GOP, whereby the obtained

solution a corresponds to the maximal throughput
performance;

Step 3: Increase J by δJ and solve the GOP again;
Step 4: Repeat Step 3 until J = J∗, which corresponds to

the maximal fairness.

Through the above procedure, different sets of the opti-
mal solution a, the corresponding relationships of system
throughput and fairness, and hence the desired tradeoff can
be obtained by suitably selecting the value of J . Notice that
after the tradeoff curve is procured, the choice of the J value
usually depends on the purpose of the application of interest
and/or the prerogative of the system designer. With the fixed
value of J , the existence of the optimal solution of the GOP
(i.e., the desired tradeoff) is assured due to the call admission
control in place, discussed in Section III. In case that the value
of J is allowed to change randomly when the system is in use,
a conservative approach can be employed: whenever a new call
arrives, we only check the feasibility condition on the solution
of the WMMFOP (i.e., the GOP with J = J∗). The new call is
admitted if there exists a solution, or rejected otherwise. Since
the feasible region does not shrink and hence the solution
obtained initially will not become infeasible when the value
of J decreases, this prevents the ongoing transmissions from
being dropped. In this case, the same call admission control
is employed, guaranteeing the QoS requirements of all calls
in service with any value of J .

V. EFFICIENCY EVALUATION BY GAME THEORY

In this section, we show that our solutions obtained from
the GOP given by (22)–(23) achieve efficient use of resources.
In game theory, efficient resource utilization is determined by
the concept of Pareto Optimality [14].

Definition 1: An action profile b∗ = (b∗1, b
∗
2, ..., b

∗
M ) is said

to be Pareto optimal if and only if there exists no other
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action profile b̃ such that for some m, Ym(b̃) > Ym(b∗) and
Yn(b̃) ≥ Yn(b∗), for n �= m, where Ym(·) is a payoff of user
m in the context of game theory. In words, an action profile
(or resource allocation) is Pareto optimal if there exists no
other action profile that makes some user(s) better off without
making the other user(s) worse off.

Proposition 4: The optimal solution a of the GOP is Pareto
optimal.

Proof: Given the action profile or optimal solution
a∗ (i.e., resource allocation) obtained from the GOP, denote
Qm(a∗) or wmQm(a∗) as the payoff of the mth link. Consider
another action profile ã. For some m, if Qm(ã) > Qm(a∗),
then Qn(ã) < Qn(a∗) for some n, as either ãm > a∗

m or ãn <
a∗

n or both. According to Definition 1, the optimal solution a∗

obtained from the GOP achieves the Pareto Optimality.
From the perspective of game theory, the resources are

efficiently utilized for increasing system throughput and/or
maintaining fairness. In other words, for the relationship of
system throughput and fairness, every point (i.e., resource
allocation) on the tradeoff curve (discussed in Section VI) is
Pareto optimal, utilizing the resources efficiently.

VI. NUMERICAL RESULTS

This section presents numerical results on: 1) system
throughput and fairness performance versus the value of J
in the GOP; and 2) the desired relationship (i.e., tradeoff
curve) of system throughput and fairness. In the numerical
analysis, we simply solve the GOP by an exhaustive search
with an increment size of δa = 0.01. Suppose that there are
I iterations in the iterative procedure for the throughput and
fairness tradeoff curve. Let ai be the optimal solution obtained
from the GOP in the ith iteration. The measure of system
throughput in the ith iteration (i.e., i ∈ I) is given by

U =

(∑M
m=1 Qm(ai)

)
− mini∈I

{∑M
m=1 Qm(ai)

}
maxi∈I

{∑M
m=1 Qm(ai)

}
− mini∈I

{∑M
m=1 Qm(ai)

}
(24)

where U ∈ [0, 1], i.e., the larger the value of the sys-
tem throughput, the larger the value of U . Let Di =
|J∗ − minm {wmQm(ai)}|, where J∗ is the solution of the
WMMFOP and Di represents the deviation of the minimum
value of wmQm(ai) among all M links from J∗, i.e., the
larger the value of Di, the poorer the weighted max-min
fairness performance. The measure of weighted max-min
fairness in the ith iteration is given by

V =
maxi∈I {Di} − Di

maxi∈I {Di} − mini∈I {Di} (25)

where V ∈ [0, 1], i.e., the larger the value of Di, the smaller
the value of V . V indicates the fairness performance of the
worst link. In the literature, Jain’s fairness index [22] is widely
employed as a measure of network-wise fairness performance.
Let JFIi be the Jain’s fairness index in the ith iteration, where

JFIi =
(
∑

m wmQm(ai))
2

M
∑

m (wmQm(ai))
2 . (26)

TABLE II

SYSTEM PARAMETERS FOR THE NUMERICAL ANALYSIS FOR THE CASE OF

EQUAL WEIGHTING FACTORS

Parameter Value

M 4

B 1

η 0.01

σ 0.1

Pm 1, ∀m

wm 1, ∀m
�
Rd

1 , ..., Rd
4

�
(2, 1, 0.5, 0.1)

J∗ 0.3290

The shaped Jain’s fairness index in the ith iteration is given
by

W =
JFIi − mini∈I {JFIi}

maxi∈I {JFIi} − mini∈I {JFIi} (27)

where W ∈ [0, 1], i.e., the larger the value of Jain’s fairness
index, the larger the value of W .

In this numerical analysis, we consider four active links in
the network, i.e., M = 4. The fading coefficient of a link is
modeled as a complex Gaussian random variable with zero
mean and unit variance. The channel gain matrix G, i.e.,
G = [Gmn]M×M , used for the numerical analysis is randomly
generated and normalized, which is given below:

G =

⎡
⎢⎢⎣

0.2818 0.3299 0.2739 0.0350
0.2418 0.1761 0.5019 1.0000
0.1823 0.9345 0.2802 0.0068
0.2016 0.4150 0.4480 0.0400

⎤
⎥⎥⎦ . (28)

Under the condition that the solution exists in the WMMFOP,
we consider two cases: 1) all the weighting factors are equal;
and 2) the weighting factors are different.

A. Equal Weighting Factors

In this case, the system parameters are given in Table II,
where J∗ is computed by solving the WMMFOP. We follow
the iterative procedure described in Section IV and obtain the
numerical results given in Table III.

First, we study the behaviors of the system throughput
measure U and the fairness measure V with different values
of J , which is given in Fig. 1. As mentioned in Section IV,
the tradeoff curve is obtained by solving the GOP iteratively,
starting at the maximal system throughput and ending at the
maximal fairness. As expected, in Fig. 1, U decreases from
the maximum value (i.e., U = 1) to the minimum value
(i.e., U = 0) with J , while V increases from the minimum
value (i.e., V = 0) to the maximum value (i.e., V = 1)
with J , which shows that increasing system throughput and
maintaining fairness are conflicting with each other. The
shaped Jain’s fairness index is also plotted for comparison.

From the results shown in Table III, the minimum weighted
utility value, minm {wmQm(a)}, increases with J , as ex-
pected. Note that the fairness performance measure of V and
that of W are different (i.e., V for the worst-link fairness
performance while W for the network-wise fairness perfor-
mance); however, in the case of equal weighting factors, the
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TABLE III

NUMERICAL RESULTS FOR THE CASE OF EQUAL WEIGHTING FACTORS

J Q1(a) Q2(a) Q3(a) Q4(a)
�

Qm(a) minm {wmQm(a)} U V W a = [a1, a2, a3, a4]

0 0.9115 0.0063 1.3134 0.0001 2.2313 0.0001 1.0000 0 0 [1.00, 0.46, 0.64, 0.14]

0.0219 0.8548 0.0230 1.2921 0.0236 2.1935 0.0230 0.9584 0.0696 0.0272 [1.00, 0.50, 0.66, 0.18]

0.0439 0.8716 0.0478 1.1874 0.0457 2.1525 0.0457 0.9131 0.1385 0.0892 [1.00, 0.52, 0.61, 0.21]

0.0658 0.8809 0.0674 1.0971 0.0672 2.1126 0.0672 0.8693 0.2041 0.1445 [1.00, 0.54, 0.57, 0.24]

0.0877 0.7930 0.0885 1.0959 0.0900 2.0674 0.0885 0.8194 0.2686 0.1792 [1.00, 0.60, 0.61, 0.29]

0.1097 0.8088 0.1097 0.9938 0.1117 2.0240 0.1097 0.7717 0.3331 0.2488 [1.00, 0.62, 0.56, 0.32]

0.1316 0.8997 0.1353 0.8077 0.1321 1.9748 0.1321 0.7175 0.4012 0.3198 [1.00, 0.61, 0.45, 0.33]

0.1535 0.8662 0.1553 0.7520 0.1541 1.9276 0.1541 0.6656 0.4682 0.3786 [1.00, 0.65, 0.44, 0.37]

0.1755 0.7390 0.1775 0.7835 0.1766 1.8766 0.1766 0.6093 0.5367 0.4544 [1.00, 0.74, 0.50, 0.44]

0.1974 0.8167 0.1986 0.6100 0.1983 1.8236 0.1983 0.5509 0.6025 0.5004 [1.00, 0.73, 0.40, 0.45]

0.2193 0.7079 0.2227 0.6189 0.2195 1.7690 0.2195 0.4908 0.6671 0.6038 [1.00, 0.82, 0.44, 0.52]

0.2413 0.6777 0.2417 0.5501 0.2425 1.7120 0.2417 0.4281 0.7345 0.6755 [1.00, 0.87, 0.42, 0.57]

0.2632 0.6693 0.2646 0.4535 0.2643 1.6517 0.2643 0.3616 0.8032 0.7262 [1.00, 0.91, 0.38, 0.61]

0.2851 0.6609 0.2864 0.3569 0.2858 1.5900 0.2858 0.2936 0.8685 0.7433 [1.00, 0.95, 0.34, 0.65]

0.3071 0.5515 0.3081 0.3187 0.3098 1.4881 0.3081 0.1815 0.9365 0.8596 [0.94, 1.00, 0.33, 0.70]

0.3290 0.3312 0.3292 0.3340 0.3290 1.3234 0.3290 0 1.0000 1.0000 [0.78, 1.00, 0.33, 0.71]
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U: shaped throughput measure
V: shaped fairness measure
W: shaped Jain’s fairness index

Fig. 1. The system throughput measure and the fairness measures against
the value of J with equal weighting factors.

general trend of both curves agrees with each other. Thus,
both fairness measures match with the max-min fairness per-
formance, as both V and W increase with minm {wmQm(a)},
in general.

Consider the trend of each utility function. For every link,
its utility value (i.e., Qm(a) of the mth link) against the
value of J is given in Table III. For a small J , the links
with smaller effective bandwidths usually obtain larger utility
values (e.g., Q3(a)). It is intuitive that those links with smaller
effective bandwidths have more freedom to increase their
throughputs than other links with larger effective bandwidths.
As J increases, the utility values of those links with smaller
effective bandwidths decrease for the sake of achieving a
certain level of fairness. However, with different channel gains,
some link, say the mth link, with a small effective bandwidth
may be forced to use a small value of am so that only a
small value of Qm(a) is achieved, for example, Q4(a) in our
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0
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V, W

U

V
W

Fig. 2. The relationship of system throughput and fairness with equal
weighting factors.

example. From (28), G24 = 1.0, meaning that the interference
impact from the 4th link to the 2nd link is significant. In order
to meet all the effective bandwidth requirements, the 4th link
can only use a small value of a4, which results in a small value
of Q4(a). Nonetheless, the utility values of all links converge
to the same value when the condition of maximal fairness
is met (i.e., weighted max-min fairness) as all the weighting
factors are equal. Notice that the discrepancies in Table III
are merely due to the discrete exhaustive search used in the
numerical analysis.

The desired tradeoff curve of system throughput and fair-
ness performances is shown in Fig. 2. The curve is a bit
concave in shape, meaning that in a nearly unfair situation
(i.e., V ≈ 0), a unit decrease in system throughput gives a
larger marginal improvement in weighted max-min fairness
performance. At a near-maximal fairness point (i.e., V ≈ 1),
a larger decrease of system throughput is required to further
increase the fairness measure. From this curve, different de-
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TABLE IV

SYSTEM PARAMETERS FOR THE NUMERICAL ANALYSIS FOR THE CASE

OF DIFFERENT WEIGHTING FACTORS

Parameter Value

M 4

B 1

η 0.01

σ 0.1

Pm 1, ∀m

(w1, ..., w4) (1, 2, 4, 8)
�
Rd

1 , ..., Rd
4

�
(2, 1, 0.5, 0.1)

J∗ 0.9249

grees of performance tradeoff between system throughput and
fairness can be found by suitably choosing the value of J . The
shaped Jain’s fairness index is also plotted for reference. This
tradeoff curve is undoubtedly useful for effective and efficient
resource allocation. With application-specific constraints (such
as fairness or throughput requirements), a desired tradeoff
point can be obtained from this relationship curve and hence
the corresponding resource allocation a can be deduced.

B. Different Weighting Factors

For the case of different weighting factors, the details of
the system parameters for the numerical analysis are given in
Table IV and the numerical results are given in Table V.

In Fig. 3, the curve of the system throughput measure U
and that of the fairness measure V with different values of
J are plotted, and the tradeoff curve of system throughput
and fairness performances is shown in Fig. 4. For U and
V , the trends of these two curves in Fig. 3 and Fig. 4
are more or less the same as those shown in Fig. 1 and
Fig. 2, respectively. For W , however, the curve of W deviates
more away from that of V in the case of different weighting
factors. In fact, using W in this case is less effective to
accurately indicate the improvement of weighted max-min
fairness performance though the minimum weighted utility
value, minm {wmQm(a)}, increases with J , shown in Ta-
ble V. Nonetheless, the Jain’s fairness index is a network-wise
fairness measure, instead of measuring the worst-link fairness
performance, though the general trend of the curve agrees with
the weighted max-min fairness performance. Notice that the
fluctuations in the graph are partly because of the discrete
exhaustive search used in the numerical analysis.

With different weighting factors, the allocation solution a
in the GOP is not the same as that with the equal weighting
factor. As mentioned, the smaller the value of wm, the more
eager is the mth link to obtain more extra resources. At the
last row of Table V, the value of Q1(a) is the largest while
that of Q4(a) is the smallest, as w1 < w2 < w3 < w4. In
fact, with different weighting factors, different traffic classes
can be differentiated. Therefore, the use of wm is crucial for
further improving the effectiveness and efficiency of resource
allocation in wireless networks with heterogeneous traffic
(e.g., voice, video, and data traffic).
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U: system throughput measure
V: fairness measure
W: shaped Jain’s fairness index

Fig. 3. The system throughput measure and the fairness measures against
the value of J with different weighting factors.
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Fig. 4. The relationship of system throughput and fairness with different
weighting factors.

VII. DISCUSSIONS ON PRACTICAL IMPLEMENTATION

In this section, some issues on practical implementation
are discussed. For wireless networks with centralized con-
trol, a central controller (such as a base station) essentially
collects requests from wireless nodes, makes decisions on
call admission, and allocates resources to wireless links. The
global network information (i.e., network resources, QoS
requirements of calls, and channel conditions) are available
at the central controller, thereby leading to an easier practical
implementation to obtain (near-)optimal resource allocation
by solving the GOP. In contrast, for wireless networks with
distributed control (without central coordination), acquiring
global network information by message exchanges is not
desired, causing a considerable amount of overhead. Thus,
each node usually has its local network information only. Node
clustering is a viable approach, where the whole network is
divided into clusters. Within each cluster, a clusterhead merely
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TABLE V

NUMERICAL RESULTS FOR THE CASE OF DIFFERENT WEIGHTING FACTORS

J Q1(a) Q2(a) Q3(a) Q4(a)
�

Qm(a) minm {wmQm(a)} U V W a = [a1, a2, a3, a4]

0 0.9115 0.0063 1.3134 0.0001 2.2313 0.0010 1.0000 0 0 [1.00, 0.46, 0.64, 0.14]

0.0617 0.9328 0.0313 1.2341 0.0089 2.2071 0.0625 0.9492 0.0666 0.0318 [1.00, 0.47, 0.60, 0.15]

0.1233 0.9285 0.0623 1.1746 0.0159 2.1813 0.1246 0.8952 0.1338 0.0610 [1.00, 0.49, 0.58, 0.16]

0.1850 0.8412 0.0941 1.1959 0.0232 2.1544 0.1853 0.8385 0.1994 0.0670 [1.00, 0.54, 0.63, 0.18]

0.2466 0.8522 0.1317 1.1082 0.0312 2.1233 0.2496 0.7733 0.2690 0.1117 [1.00, 0.56, 0.59, 0.19]

0.3083 0.8724 0.1553 1.0300 0.0401 2.0978 0.3106 0.7198 0.3351 0.1585 [1.00, 0.57, 0.55, 0.20]

0.3700 0.8759 0.1880 0.9567 0.0477 2.0683 0.3759 0.6579 0.4058 0.2096 [1.00, 0.59, 0.52, 0.21]

0.4316 0.8069 0.2199 0.9581 0.0546 2.0395 0.4364 0.5974 0.4713 0.2231 [1.00, 0.64, 0.55, 0.23]

0.4933 0.8754 0.2471 0.8272 0.0621 2.0118 0.4941 0.5394 0.5337 0.3208 [1.00, 0.63, 0.47, 0.23]

0.5550 0.8789 0.2786 0.7529 0.0698 1.9802 0.5573 0.4733 0.6021 0.3965 [1.00, 0.65, 0.44, 0.24]

0.6166 0.7774 0.3093 0.7837 0.0785 1.9489 0.6186 0.4076 0.6685 0.3887 [1.00, 0.72, 0.49, 0.27]

0.6783 0.7276 0.3426 0.7604 0.0856 1.9162 0.6844 0.3386 0.7397 0.4223 [1.00, 0.77, 0.50, 0.29]

0.7399 0.7910 0.3720 0.6265 0.0942 1.8837 0.7441 0.2708 0.8043 0.5729 [1.00, 0.76, 0.42, 0.29]

0.8016 0.8345 0.4045 0.5103 0.1004 1.8497 0.8035 0.1993 0.8686 0.7255 [1.00, 0.76, 0.36, 0.29]

0.8633 0.8969 0.4324 0.3678 0.1094 1.8065 0.8649 0.1086 0.9350 0.9124 [1.00, 0.75, 0.29, 0.29]

0.9249 0.9260 0.4625 0.2452 0.1211 1.7548 0.9249 0 1.0000 1.0000 [1.00, 0.76, 0.24, 0.30]

deals with the network activity of its own neighborhood
[23]. Each clusterhead can run the GOP locally by treating
the inter-cluster interference as a portion of the intra-cluster
interference, yet leading to a suboptimal solution.

Whether a resource allocation solution obtained is optimal
or suboptimal depends on the algorithm design. Although our
framework is universal in the sense that it can be applied to
any system model which is interference-limited (e.g., CDMA
systems), one drawback is that solving this optimization prob-
lem generally involves high computational complexity. Some
(suboptimal) algorithms with low complexity are preferred for
the sake of practical implementation. To tackle a non-trivial
optimization problem (i.e., non-convex in nature) such as the
GOP, two approaches are commonly used:

1) Convex approximation. The original optimization
problem is relaxed to a convex optimization problem.
The optimal solution of the relaxed problem can
be achieved by classical methods such as gradient
methods and interior-point methods [24]. In [7], it is
proved that under a high signal-to-interference-plus-
noise ratio approximation, the objective function of
the GOP can be formulated to be a concave function
(by verifying that the Hessian matrix is negative
definite) and hence the GOP becomes a convex
optimization problem. A rich body of literature ex-
ists on the theory of convex optimization whereby
fast, simple, and robust practical algorithms can be
devised (e.g., gradient-based iterations) [7], [24]; and

2) Interpreting Karush-Kuhn-Tucker (KKT) conditions
[24]. The necessary conditions for the optimal so-
lution can be verified the by KKT conditions. The
KKT conditions for the GOP are as follows:

M∑
m=1

∂Qm(a)
∂am

+ αmwm
∂Qm(a)

∂am
= λm − μm, ∀m

(29)

wmQm(a) ≥ J, ∀m (30)

αm (J − wmQm(a)) = 0, ∀m (31)

λm (am − 1) = 0, ∀m (32)

μmam = 0, ∀m (33)

αm, λm, μm ≥ 0, ∀m (34)

0 ≤ am ≤ 1, ∀m (35)

where αm is the Lagrange multiplier for the con-
straint (30), and λm and μm are the Lagrange
multipliers for the constraint (35). Optimal and/or
heuristic algorithms can be deduced based on the
structure of the KKT conditions or conceived as
methods for solving the KKT conditions [24], [25].
For example, combining (29) and (33), we have⎧⎨
⎩λm − (1 + αmwm)

∂Qm(a)
∂am

−
M∑

n�=m

∂Qn(a)
∂am

⎫⎬
⎭ ·

am = 0, ∀m
(36)

and hence

λm ≥

(1 + αmwm)
∂Qm(a)

∂am
−

⎧⎨
⎩−

M∑
n�=m

∂Qn(a)
∂am

⎫⎬
⎭ , ∀m.

(37)

Therefore, if am is positive, equality holds for (37),
which is the necessary condition of am being pos-
itive, providing some guidelines for the design of
a resource allocation algorithm. To handle a large
amount of decision variables, data structure plays
an important role in determining the complexity. For
instance, tree implementation together with sorting
and/or searching can facilitate to bring lower com-
putational complexity to the algorithm [26].

In this paper, the goal is to develop a unified framework to
balance throughput and fairness. Nonetheless, the actual sys-
tem performance with practical implementation needs further
investigation. Devising practical algorithms and actual system
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operations (such as medium access control) tailored for our
system with accurate traffic models is left for future work.

VIII. CONCLUSION

In this paper, we propose the unified optimization frame-
work for interference-limited wireless networks, whereby the
optimal relationship curve of system throughput and fairness
can be obtained. Different degrees of performance tradeoff
between system throughput and fairness can be achieved,
by suitably adjusting the value of the bargaining floor. QoS
support is assured with the help of the call admission control
based on the feasibility of the solution of the GOP. From the
perspective of game theory, the resource allocation solutions
achieve the Pareto Optimality, demonstrating efficient use of
network resources.

ACKNOWLEDGEMENT

The authors wish to thank the anonymous reviewers for their
helpful reviews and suggestions which improved the quality
and presentation of this paper.

REFERENCES

[1] H. T. Cheng, H. Jiang, and W. Zhuang, “Distributed medium access con-
trol for wireless mesh networks,” Wireless Commun. Mobile Computing,
vol. 6, no. 6, pp. 845–864, Sep. 2006.

[2] R. Jurdak, C. V. Lopes, and P. Baldi, “A survey, classification and
comparative analysis of medium access control protocols for ad hoc
networks,” IEEE Commun. Surveys Tutorials, vol. 6, no. 1, pp. 2–16,
2004.

[3] H. Luo, J. Cheng, and S. Lu, “Self-coordinating localized fair queueing
in wireless ad hoc networks,” IEEE Trans. Mobile Computing, vol. 3,
no. 1, pp. 86–98, Jan.–Mar. 2004.

[4] F. P. Kelly, A. Maulloo, and D. K. H. Tan, “Rate control in communi-
cation networks: Shadow prices, proportional fairness and stability,” J.
Operational Research Society, vol. 49, no. 3, pp. 237–252, 1998.

[5] S. H. Low and D. E. Lapsely, “Optimization flow control I: Basic
algorithm and convergence,” IEEE/ACM Trans. Networking, vol. 7,
no. 6, pp. 861–874, Dec. 1999.

[6] D. Julian, M. Chiang, D. O’Neill, and S. Boyd, “QoS and fairness
constrained convex optimization of resource allocation for wireless
cellular and ad hoc networks,” in Proc. IEEE INFOCOM, June 2002,
vol. 2, pp. 477–486.

[7] M. Chiang, “Balancing transport and physical layers in wireless mul-
tihop networks: Jointly optimal congestion control and power control,”
IEEE J. Select. Areas Commun., vol. 23, no. 1, pp. 104–116, Jan. 2005.

[8] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: The single-
node case,” IEEE/ACM Trans. Networking, vol. 1, no. 3, pp. 344–357,
June 1993.

[9] ——, “A generalized processor sharing approach to flow control in
integrated services networks: The multiple node case,” IEEE/ACM
Trans. Networking, vol. 2, no. 2, pp. 137–150, 1994.

[10] S. Lu, V. Bharghavan, and R. Srikant, “Fair scheduling in wireless packet
networks,” IEEE/ACM Trans. Networking, vol. 7, no. 4, pp. 473–489,
Aug. 1999.

[11] G. Miklos and S. Molna, “Fair allocation of elastic traffic for a wireless
base station,” in Proc. IEEE Globecom, 1999, vol. 3, pp. 1673–1678.

[12] J. Damnjanovic, A. Jain, T. Chen, and S. Sarkar, “Scheduling the
CDMA2000 reverse link,” in Proc. IEEE VTC, 2002, vol. 1, pp. 386–
390.

[13] B. Wang, K. C. Chua, and H.-P. Schwefel, “Resource allocation for
non-realtime data users in UMTS uplink,” in Proc. IEEE WCNC, Mar.
2003, vol. 2, pp. 1055–1059.

[14] G. Owen, Game Theory, 3rd ed. San Diego: Academic Press, 2001.
[15] A. Abdrabou and W. Zhuang, “A position-based QoS routing scheme

for UWB mobile ad hoc networks,” IEEE J. Select. Areas Commun.,
vol. 24, no. 4, pp. 850–856, Apr. 2006.

[16] F. P. Kelly, “Notes on effective bandwidths,” in Stochastic Networks:
Theory and Applications. Oxford, U.K.: Oxford University Press, 1996.

[17] D. Wu and R. Negi, “Effective capacity: A wireless link model for
support of quality of service,” IEEE Trans. Wireless Commun., vol. 2,
no. 4, pp. 630–643, July 2003.

[18] C. E. Shannon, “A mathematical theory of communications,” Bell Labs
Technical J., vol. 27, pp. 623–656, 1948.

[19] A. Goldsmith, Wireless Communications. Cambridge, U.K.: Cambridge
University Press, 2004.

[20] H. M. Wagner, Principles of Operations Research. Upper Saddle River,
NJ: Prentice Hall, Inc., 1975.
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