Performance Analysis of Cooperative ADHOC MAC for Vehicular Networks

Sailesh Bharati
PhD Student, BBCR Lab
Supervision under Prof. Weihua Zhuang
Agenda

• Introduction
• Problem Statement
• System Model
• Performance Analysis
• Results and Discussion
• Summary and Future Work
Introduction

• State of art
 • Demand for **automation and ubiquitous connectivity**
 • Scopes are **beyond** entertainment, day-to-day organization to health/safety/financial issues, etc
 • **Better road environment**: improve road safety, increase traffic efficiency and providing on-board infotainment services
 • Vehicles are expected to be smart enough to **provide better on-board environment**

The evolution of a smart vehicle with advanced sensors and communication devices
Introduction

• Communication network
 • Vehicles are equipped with
 • AU: To run application(s)
 • OBU: Wireless network interface
 • RSUs are placed along the road
 • Vehicles communicate with each other (V2V) or with RSUs (V2I)
 • Wireless transmission medium

Smart vehicles equipped with AUs, OBUs and RSUs along the road, form a wireless communication network called VANET.
Introduction

• Challenges from a communication perspective
 • **Highly dynamic**: frequent link and/or connection breakage
 • **Heterogeneous data**: safety message, voice/video streaming, etc
 • **Operation Modes**: mobile-mobile, mobile-infrastructure
 • **Multi Channel Operations**: 1 control and 6 service channels
 • **Communication**: broadcast, short-range, uncoordinated

These challenges must be addressed in designing a communication protocol for VANETs
MAC Requirements

- Robust, efficient, and simple MAC protocol
 - reliable broadcast service
 - strict delay for safety messages
 - throughput sensitive application
 - multi channel operation

- Approaches
 - IEEE 802.11 Based
 - distributed TDMA MAC
 - CDMA and SDMA MAC

Protocols based on CDMA and SDMA are relatively complex
IEEE 802.11

• Advantages
 • Simple enough to implement
 • Widely considered by industries and research academia
 • P2P communication: RTS, CTS and ACK as control signals

• Limitations
 • Broadcast service: no control signals \(\rightarrow\) **Unreliable**
 • Channel is accessed randomly \(\rightarrow\) **Unbounded latency**
 • Flooding in broadcast service \(\rightarrow\) **Broadcast Storm**

High priority safety messages have a strict delay requirement and demand reliable broadcast service
Approaches

• **TDMA MAC**
 - ADHOC MAC\(^1\): A distributed TDMA MAC
 - Frame information (FI) acts as ACK for each packet i.e., broadcast, multicast and unicast
 - Suffers form collision due to the change in topology (mobility)
 - VeMAC\(^2\) provides a reservation scheme for highly mobile environment
 - Three disjoint time-slot groups for RSUs and vehicles moving in opposite directions

Problem Statement

• Frame and time slots
 - Time is divided into frames and a frame into time slots
 - The number of time slots in a frame is fixed
 - Each time slot is of fixed duration

• May lead to a wastage of time slots when there are not enough nodes to use all the available time slots in a frame

• In addition, upon transmission failure, the source node has to wait until the next frame even if there are unreserved time slots

One possible solution: Utilizing an unreserved time slot for retransmission of a packet that failed to reach the target destination.
Possible Solution

• Cooperative ADHOC MAC (CAH-MAC)
 • The destination D fails to receive a packet successfully from the source S
 • Node H can cooperate to relay the packet
 • An unreserved time slot is used for the retransmission
 • Neighboring nodes are not stopped form their transmission due to cooperation
Existing Works on Cooperation

• Most of them are based on IEEE 802.11, which are not suitable for TDMA based protocols

• In TDMA based protocols, cooperation are
 • only for infrastructure based networks
 • coordinated by AP or BS
 • performed by/during fixed helpers and/or time slots

CAH-MAC : Cooperative operations such as helper selection, time slot selection, and cooperative relay transmission are performed in a distributed manner
System Model

• A VANETs consisting of N vehicles
 ▪ moving in a multi-lane road
 ▪ with negligible relative movements

• Vehicles are distributed randomly on the road with an exponentially distributed inter-vehicular distance

• Counting of vehicles follows a Poisson process over a given length of road

• Link model:
 ▪ Control signals are exchanges within transmission range r
 ▪ Within r, packets are received successfully with the probability p

• No mobility hence, the prob. of successful transmission

\[p_s = (1 - p_c) p = p \]
System Model

- Time \rightarrow frames \rightarrow F time slots

- A packet is transmitted in a reserved time slot.

- Assumptions:
 - Node has already reserved its time slot
 - Sync. using 1PPS (GPS)

For reservation and ACK

Frame Information (FI)	Cooperation Header (COH)	Packet Header	Payload data	CRC

For offering cooperation

As in other protocols
Neighboring Nodes

- Two-Hop set
 - The group of nodes that share a frame
 - Consists of nodes that are within r distance from a reference node
- Counting of the number of THS members follows a Poisson process over a road length of $2r$.
Time Slots

- Time slots can be:
 - **Unreserved** \((UN)\): not used by any node (# of \(UN = U\))
 - **Successful** \((SU)\): reserved with successful transmission (# of \(SU = X\))
 - **Failed** \((US)\): reserved with transmission failure.

In CAH-MAC, an unreserved time slot is used to retransmit a packet that failed to reach the destination
CAH-MAC

- Transmission failure detection
 - The source transmits a packet in its time slot (a)
 - The destination does not acknowledge a packet transmission from the source (b)
CAH-MAC

• Potential helpers
 ▪ Nodes which receive a packet from the source and detect the transmission failure

• Possible time slots
 ▪ Any unreserved time slot in which the helper can retransmit a packet to the destination
Existence of a Potential Helper

- Potential helper exists, if there is at least one common node of both S and D, which has a copy of the failed packet
- Y denotes the number of potential helpers

$p_1 = \Pr\{Y > 0\}$

$$= \sum_{k=3}^{F} \left(1 - (1-p_s)^{k-2}\right) \frac{(1.5\rho r)^{k} e^{-1.5\rho r}}{k!} + \left(1 - (1-p_s)^{F-2}\right) \left[1 - \sum_{k=0}^{F} \frac{(1.5\rho r)^{k} e^{-1.5\rho r}}{k!}\right]$$

Common coverage area of a s-d pair
Existence of a Time Slot

- The source, the destination and the helpers share the same time frame
- A time slot for the cooperation exists if there is at least one unreserved time slot in a frame (i.e., $U > 0$)

$$p_2 = \Pr\{U > 0\} = \sum_{i=1}^{F-1} \frac{(2\rho r)^i e^{-2\rho r}}{i!}$$
CAH-MAC

- **Cooperation Header (COH)**
 - Used by the helper to inform
 - its decision to cooperate
 - the time slot in which transmission failure occurred
 - the selected unreserved time slot for the relay transmission
 - First come first serve
Cooperation Enabled Transmission

- Cooperation is triggered if
 - there is at least one potential helper $Y > 0$ (prob. p_1)
 - there is at least one unreserved time slot $U > 0$ (prob. p_2)
- The probability of cooperation
 \[p_{coop} = p_1 p_2 \]
- The probability of successful transmission
 \[p_{s_{coop}} = p_s + p_s (1 - p_s)p_{coop} \]

If direct transmission fails \rightarrow Cooperative transmission
Packet Transmission Delay

- The number of transmission attempts follows a Geometric Distribution
- ADHOC MAC

\[\Pr\{M = i\} = (1 - p_s)^{i-1} p_s \]

- CAH-MAC

\[\Pr\{M = i\} = (1 - p_s^{coop})^{i-1} p_s^{coop} \]
Packet Dropping Rate

• A packet is dropped if it not delivered within maximum retransmission limits (M_{max})

• PDR for ADHOC MAC:

$$PDR = 1 - \sum_{i=1}^{M_{max}} (1 - p_s)^{i-1} p_s$$

• PDR for CAH-MAC

$$PDR_{coop} = 1 - \sum_{i=1}^{M_{max}} (1 - p_s^{coop})^{i-1} p_s^{coop}$$
Simulation Setup

- Number of vehicles (N): 500 vehicles
- Number of lanes (L): 2 lanes
- Width of a lane (w): 5 meters
- Number of time slots per frame (F): 40 and 80 time slots
- Transmission range (r): 200 and 300 meters
- Vehicle density per lane (ρ_l): 0.01 vehicles/m
- Max. Retransmission Limits (M_{max}): 1 and 10 frames
- Channel characteristics (p): [0, 1]
Transmission Delay

- $2\rho r$ is an average number of THS members

- The larger the number of THS members \rightarrow the lesser the number of unreserved time slots

- CAH-MAC uses unreserved slots for retransmission \rightarrow delay decreases

- Higher the number of unreserved time slot \rightarrow delay increases
Packet Dropping Rate

- The larger the M_{max} value, the smaller the dropping rate.
- Dropping rate decrease with cooperation ($PDR_{\text{coop}} > PDR$).
- The higher the number of THS members and/or unreserved time slots, the smaller the PDR (the gaps increases with increase in p_{coop}).
Summary

• We studied the performance of CAH-MAC
 • Cooperation is useful to tackle the poor channel condition
 • Uses only the unreserved slot
 • Decreases delay and packet dropping rate
Future Work

• CAH-MAC with mobility and realistic channel
 • Collision occurs with mobility
 • Reservation and cooperation contend for a time slot

• Cooperative relay and time slot reservation collide
 • Cooperation is not beneficial
 • May have a negative effects
 • Stops a node to reserve a time slot
Future Work

• Collision Avoidance
 • In CAH-MAC, a helper node transmits the FI for α time units, which is not necessary
 • A new node always starts its transmission from the beginning of the unreserved time slot
 • To avoid collisions, the helper node waits for α_1 time units before starting cooperative transmission
 • α_1 can be kept fixed
Future Work

- **Cooperative Transmission**
 - Potential helper nodes randomly select $\alpha_2 \in [\alpha_1, \alpha - \alpha_1]$, then performs cooperation
 - The best helper has the smallest α_2 value
 - **The best helper first**
 - Other potential helpers back-off their transmission
Future Work

• Cooperation for the broadcast service
 • Mission critical and safety messages require reliable and prompt broadcast service
 • CAH-MAC works for point-to-point
 • Reactive response
 • Cooperation decision based on one receiver
 • FIs of all the one-hop nodes have to be analyze
 • Source waits for its own time slot for retransmission
 • Hence, it require a proactive cooperation scheme
 • Unreserved time slots can be use
Future Work

• Multi channel cooperative MAC
 • VANET is a multi-channel wireless network.
 • MAC must be compatible with DSRC/WAVE standard.
• Challenges
 • Channel conflict problem
 • Deaf receiver problem
 • Unfriendly with reliable broadcast or multicast
• Use of cooperation to exchange the information between neighboring nodes
 • Selection of channel (service channel and time slots)
 • Stopping any conflict between two services
 • Relaying ACK and/or NACK
Thank you!!