Outline

Introduction
Energy Saving at the Network Level
The Potentials of Network Cooperation
Network Cooperation for Energy Saving
 System Model
 The Proposed Strategy
Performance Evaluation
Conclusion
Outline

Introduction

Energy Saving at the Network Level

The Potentials of Network Cooperation

Network Cooperation for Energy Saving

System Model

The Proposed Strategy

Performance Evaluation

Conclusion
Green Communications Network Design Objectives:

1. Reduce the amount of energy consumption by the networks’ BSs
2. Maintain a satisfactory QoS for the users
Motivations for Green Radio Communications

Service Provider’s Financial Considerations
- Half of annual operating expenses are energy costs

Environmental Considerations
- Currently, 2% of CO2 emissions from telecom.
- By 2020, 4% of CO2 emissions
Outline

Introduction

Energy Saving at the Network Level

The Potentials of Network Cooperation

Network Cooperation for Energy Saving

System Model

The Proposed Strategy

Performance Evaluation

Conclusion
Energy Saving at Network Level

Solutions for Energy Aware Infrastructure

- **Renewable Energy Sources**
 - Reduce CO2 emissions by using renewable energy
 - Reliability issues

- **Heterogeneous Cell Sizes**
 - Macro-cells ➔ Femto-cells
 - Balance of different cell sizes is required

- **Dynamic Planning**
 - Exploit traffic load fluctuations
 - Switch off available resources at light traffic load
Dynamic Planning

- Temporal fluctuations in traffic load

Resources on-off Switching

Radio transceivers of active BSs

Entire BS switch-off
Dynamic Planning Cont.

• **Dynamic planning challenges**

Service Provision Guarantee

- **Increase cell radii**
 - Increase transmission power

- **Relaying mechanism**
 - Unreliable for delay sensitive applications

- **Network cooperation**
 - Alternately switch on-off resources
Outline

Introduction

Energy Saving at the Network Level

The Potentials of Network Cooperation

Network Cooperation for Energy Saving

System Model

The Proposed Strategy

Performance Evaluation

Conclusion
Heterogeneous wireless communication network
Heterogeneous Medium Cont.

Potential Benefits of Cooperative Networking

Mobile Users
- Always best connection
- Multi-homing

Networks
- Relaying
- Load balance
- Energy saving
• In this article:

- Employ cooperative networking to achieve energy saving and avoid dynamic planning shortcomings

- Networks with overlapped coverage alternately switch on-off: 1. BSs, 2. radio transceivers of active BSs according to call traffic load conditions
- Develop an optimal resource on-off switching framework:

1. Captures the stochastic nature of call traffic load
2. Adapts to temporal fluctuations in the call traffic load
3. Maximize the amount of energy saving under service quality constraints in a cooperative networking environment
Outline

Introduction

Energy Saving at the Network Level

The Potentials of Network Cooperation

Network Cooperation for Energy Saving

System Model

The Proposed Strategy

Performance Evaluation

Conclusion
System Model

- **Cellular/ WiMAX system**
 - \(N \) cellular network cells covered by WiMAX BS
 - \(C \) channels available in cellular network BS \(\Rightarrow k_{cn} \) active channels
 - \(M \) channels available in WiMAX network BS \(\Rightarrow k_{wn} \) active channels
 - \(X = [x_1, x_2, ..., x_N, x_{N+1}] \)
 Vector of BSs working modes in the overlapped coverage area

Figure 1. The network coverage areas.
System Model Cont.

- Power Consumption model
 \[P_w (P_c) \]
 Total power consumption of WiMAX (Cellular) BS

 \[P_{wo} (P_{co}) \]
 Fixed component

 \[P_{v} (P_{cv}) \]
 Variable component

 \[P_{wf} (P_{cf}) \]
 Power consumption of inactive BS

 \[\beta P_{wo} (\beta P_{co}) \]
 Switching cost

Figure 1. The network coverage areas.
• Call traffic and mobility
Assumptions:
A1. New call arrivals to cell $n \rightarrow$ Poisson process with mean arrival rate λ_n
A2. Handoff call arrivals to cell $n \rightarrow$ Poisson process with mean arrival rate ν_n
A3. MT dwell time \rightarrow exponential distribution with mean $1/\eta$
A4. Call duration \rightarrow exponential distribution with mean $1/\mu$

Figure 1. The network coverage areas.
The Proposed Energy Saving Strategy

Call Traffic Load Fluctuations

Large Scale Fluctuations

\[T = \{1, 2, \ldots, T\} \]
\[T = 24 / \tau \]

Small Scale Fluctuations

\[D = \{1, 2, \ldots, D\} \]
\[D = \tau / \Lambda \]
The Proposed Energy Saving Strategy

Figure 2. Time sequence of optimization events for the network cooperation energy saving framework.
The Proposed Energy Saving Strategy

• **Decision on BS Working Mode:**

 - Maximize energy saving
 - Minimize the frequency at which BS changes its working mode from inactive to active
 - Achieve acceptable service quality (call blocking probability)
 - Ensure radio coverage in the overlapped area
The Proposed Energy Saving Strategy

• **Large Scale Optimization Problem:**

\[
\begin{align*}
\max_{S_n > 0, J, X} & \left\{ \alpha \left[\sum_{n=1}^{N} (P_c - P_n) + (P_w - P_{N+1}) \right] - (1 - \alpha) \left[\sum_{n=1}^{N} \Delta P_n + \Delta P_{N+1} \right] \right\} \\
\text{s.t.} & \quad \frac{(\lambda_n / \mu_u)^{S_n} / S_n !}{S_n} \leq \varepsilon \quad \forall n \in N \\
& \quad \sum_{s=1}^{S_n} ((\lambda_n / \mu_u)^{S} / S !) \\
x_{N+1} & = \begin{cases}
1, & \exists S_n > C, n \in N \\
0, & \text{otherwise}
\end{cases} \\
\sum_{n=1}^{N} x_n & = \begin{cases}
N, & x_{N+1} = 0 \\
J, & x_{N+1} = 1, \sum_{n=1}^{N} S_n \leq M + JC
\end{cases}
\end{align*}
\]
The Proposed Energy Saving Strategy

- **Small Scale Optimization Problem:**

\[
\max_{S_n > 0} \{ x_n \cdot [P_c - (P_{co} + k_{cn} P_{cv})] + x_{N+1} \cdot [P_w - (P_{wo} + k_{wn} P_{wv})] \}
\]

\[
\text{s.t.} \quad \frac{(\lambda_n / \mu_u)^{S_n}}{S_n !} \leq \epsilon \quad \forall n \in N
\]

\[
\sum_{s=1}^{S_n} ((\lambda_n / \mu_u)^s / S !)
\]
Performance Evaluation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>10</td>
<td>P_c</td>
<td>400 W</td>
<td>τ</td>
<td>1 hour</td>
</tr>
<tr>
<td>M</td>
<td>72</td>
<td>P_{co}</td>
<td>250 W</td>
<td>Λ</td>
<td>15 minutes</td>
</tr>
<tr>
<td>P_w</td>
<td>1500 W</td>
<td>P_{cf}</td>
<td>10 W</td>
<td>α</td>
<td>0.5</td>
</tr>
<tr>
<td>P_{wo}</td>
<td>400 W</td>
<td>1/η</td>
<td>4 min</td>
<td>β</td>
<td>0.1</td>
</tr>
<tr>
<td>P_{wf}</td>
<td>30 W</td>
<td>1/μ</td>
<td>6 min</td>
<td>ε</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Table 1. System parameters.

Figure 1. The network coverage areas.
Performance Evaluation Cont.

Figure 3. The aggregate traffic mean arrival rate in each cell.
Performance Evaluation Cont.

<table>
<thead>
<tr>
<th>Period</th>
<th>1–5</th>
<th>6–12</th>
<th>13–14</th>
<th>15–19</th>
<th>20</th>
<th>21–23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1110</td>
<td>0001</td>
<td>1001</td>
<td>1101</td>
<td>0101</td>
<td>0001</td>
<td>1110</td>
</tr>
</tbody>
</table>

Table 2. BS working mode.

<table>
<thead>
<tr>
<th>BS</th>
<th>Cellular 1</th>
<th>Cellular 2</th>
<th>Cellular 3</th>
<th>WiMAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Saving</td>
<td>44.68%</td>
<td>48.75%</td>
<td>73.13%</td>
<td>24.5%</td>
</tr>
</tbody>
</table>

Table 3. Percentage energy saving without small scale optimization

<table>
<thead>
<tr>
<th>BS</th>
<th>Cellular 1</th>
<th>Cellular 2</th>
<th>Cellular 3</th>
<th>WiMAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Saving</td>
<td>46.33%</td>
<td>50.31%</td>
<td>74.06%</td>
<td>34.45%</td>
</tr>
</tbody>
</table>

Table 4. Percentage energy saving with small scale optimization
Figure 4. Call blocking probability in each cell with the optimal number of active channels from the on BSs.
Outline

Introduction
Energy Saving at the Network Level
The Potentials of Network Cooperation
Network Cooperation for Energy Saving
System Model
The Proposed Strategy
Performance Evaluation
Conclusion
Conclusion

• Network cooperation for energy saving on two scales:
 - Large scale: networks with overlapped coverage alternately switch their BSs according to long-term traffic load fluctuations
 - Small scale: active BSs switches its channels according to short-term traffic load fluctuations

• Satisfactory service quality in terms of call blocking and large percentage of energy saving, ensure radio coverage

• Service quality constraints can be extended to: minimum achieved throughput for data applications and delay and delay-jitter for video streaming applications

• Incurred cost: synchronization overhead required
THANK YOU!