Research on Communication and Control in Smart Grid

Ruilong (Reggie) Deng

Joint work with Jiming Chen, Xianghui Cao
Zhejiang University, Hangzhou, China
Yan Zhang, Sabita Maharjan, and Stein Gjessing
Simula Research Lab & University of Oslo, Norway
Outline

• Introduction

• Sensing-Delay Tradeoff for Communication in Cognitive Radio enabled Smart Grid

• Sensing-Performance Tradeoff in Cognitive Radio enabled Smart Grid
Outline

• Introduction

• Sensing-Delay Tradeoff for Communication in Cognitive Radio enabled Smart Grid

• Sensing-Performance Tradeoff in Cognitive Radio enabled Smart Grid
Introduction

• Power grid challenges
 – rising demand
 – aging infrastructure
 – increasing greenhouse gas emission

• Smart grid
 – renewable & distributed energy resources
 – two-way communication
 – demand response
 – agile, reliable, efficient, secure, economy, and environmental friendly
Introduction (cont’d)

- big pictures of smart grid
Outline

- Introduction
- Sensing-Delay Tradeoff for Communication in Cognitive Radio enabled Smart Grid
- Sensing-Performance Tradeoff in Cognitive Radio enabled Smart Grid
Outline

• Introduction

• Sensing-Delay Tradeoff for Communication in Cognitive Radio enabled Smart Grid

• Sensing-Performance Tradeoff in Cognitive Radio enabled Smart Grid

Sensing-Delay Delay Tradeoff
- Introduction

- A closed-loop system
 - input, feedback, controller, actuator and output

- Two-way communication
 - HAN: WiFi/ZigBee; NAN: Wifi; WAN: 3G/satellite/WiMAX
Sensing-Delay Tradeoff
- Introduction (cont’d)

• **Cognitive radio**
 – licensed/Primary User (PU)
 – unlicensed/Secondary User (SU)
 – SU can use “spectrum hole” when PU is absent
 – but vacate it instantly when PU is in operation
Sensing-Delay Tradeoff
- Introduction (cont’d)

• **Motivation**
 – data from smart meters will be up to tens of thousands of terabytes
 – conflict between spectrum scarcity and under-utilization

• **Cognitive radio enabled smart grid**
 – spectrum sensing/channel switching
 – to improve communication reliability/timeliness
 – home area network with cognitive radio (CogHAN)

• **Contribution**
 – cognitive radio to improve smart grid communication
 – optimal sensing time to reduce packet loss rate/delay
 – sensing-delay tradeoff through theorem/simulation
Sensing-Delay Tradeoff - System Model

- **Channel model**
 - In CogHAN, smart meters periodically transmit data to gateway
 - Two wireless channels:
 - One from unlicensed spectrum - original channel Ch_1
 - The other from licensed spectrum - cognitive channel Ch_2

- **Spectrum sensing/channel switching**
 - Assume Ch_2 is better than Ch_1, and smart meter can switch data transmission to Ch_2
 - Ch_2 is randomly occupied by PU
 - Spectrum sensing to detect the state of Ch_2 for opportunistic utilization
 - Detection probability P_d: the probability of detecting PU when it is in operation
Sensing-Delay Tradeoff - Theoretic Analysis

- Theorem 1
 - spectrum sensing before channel switching reduces collision probability on Ch_2, compared to that without sensing

- Framework of spectrum sensing before channel switching for CogHAN communication
Sensing-Delay Tradeoff
- Theoretic Analysis (cont’d)

- Probability of channel switching
 - P_{sw} increases with sensing time τ

- Packet loss rate/delay of CogHAN communication

$$\begin{align*}
L &= -(L_1 - L_2)P_{sw} + L_1 \\
D &= \tau - (D_1 - D_2)P_{sw} + D_1
\end{align*}$$

- where $L_1, D_1/L_2, D_2$ are packet loss rate/delay of Ch_1/Ch_2
 respectively

- Packet loss rate
 - L decreases with sensing time τ
Sensing-Delay Tradeoff
- Theoretic Analysis (cont’d)

• Delay

\[D = \tau - (D_1 - D_2)P_{sw} + D_1 \]

– \(D \) decreases when \(\tau \) is small and increases when \(\tau \) is large
– tradeoff between sensing capacity and delay
– objective: to find optimal sensing time such that delay is minimized while PU is sufficiently protected

\[
\min_{\tau} D(\tau) \quad \text{s.t. } P_d(\tau) \geq \overline{P_d}
\]

– where \(\overline{P_d} \) is target probability to sufficiently protect PU

• Theorem 2

– for any target detection probability \(\overline{P_d} > 0.5 \), there exists unique optimal sensing time \(\tau^* \in [\tau_{min}, +\infty) \) which yields minimum delay of CogHAN communication
Sensing-Delay Tradeoff
- Numerical Results

- **Simulation setup**
 - Ch_2 is assumed to have bandwidth 6 Mhz. Noise is AWGN. We are interested in a low SNR = -15 dB

- probability of channel switching increases with sensing time
- packet loss rate decreases with sensing time
Sensing-Delay Tradeoff
- Numerical Results (cont’d)

- Sensing-delay tradeoff
 - delay first decrease and then increase with sensing time
 - there exists unique optimal sensing time with minimum delay
Outline

• Introduction

• Sensing-Delay Tradeoff for Communication in Cognitive Radio enabled Smart Grid

• Sensing-Performance Tradeoff in Cognitive Radio enabled Smart Grid
Outline

• Introduction

• Sensing-Delay Tradeoff for Communication in Cognitive Radio enabled Smart Grid

• Sensing-Performance Tradeoff in Cognitive Radio enabled Smart Grid

Sensing-Performance Tradeoff
- Demand Response Management

- Smart distribution grid with one power provider, \(N \) power consumers and control unit
 - provider cost function \(C(s) \): increasing and convex
 - consumer utility function \(G_i(d_i) \): non-decreasing and concave
Sensing-Performance Tradeoff
- Demand Response Management (cont’d)

- Problem formulation
 - provider profit:
 \[\max_s [ps - C(s)] \]
 - consumer profit:
 \[\max_{d_i} [G_i(d_i) - pd_i] \]
 - social welfare:
 \[\max_{s,\{d_i\}} [\sum_{i=1}^N G_i(d_i) - C(s)] \]
 s.t. \[s \geq \sum_{i=1}^N d_i \]
 - distributed & iterative @
 - optimal: \[s^* = \sum_{i=1}^N d_i^* \]

Sensing-Performance Tradeoff
- Communication Affects Control

- Communication outage ζ
 - iteration: $p_{k+1} = [p_k - \gamma(s_k^* - (1 - \zeta)\sum_{i=1}^{N}d_{i,k}^*)]^+$
 - suboptimal: $\tilde{s} = (1 - \zeta)\sum_{i=1}^{N}\tilde{d}_i$

- price: $\tilde{p} = f^{-1}(1 - \zeta)$ where $f \triangleq \frac{(C')^{-1}}{\sum_{i=1}^{N}(G_i')^{-1}}$

- supply: $\tilde{s} = (C')^{-1}(\tilde{p})$
- demand: $\tilde{d}_i = (G_i')^{-1}(\tilde{p})$
- $(C')^{-1}$, f^{-1} increasing, and $(G_i')^{-1}$ decreasing
- $\tilde{p} < p^*$, $\tilde{s} < s^*$, $\tilde{d}_i > d_i^*$

how outage affects provider/consumer profit/social welfare?
• **Two stages**
 - unit commitment: forward price $p_f = \tilde{p}$
 - economic dispatch: option price $p_o > \tilde{p}$

• **Communication affects control**
 - provider profit: $\tilde{P}_p = \tilde{p}\tilde{s} - C(\tilde{s}), \frac{\partial \tilde{P}_p}{\partial \zeta} < 0$
 - consumer profit: $\tilde{P}_c = \sum_{i=1}^{N} G_i(\tilde{d}_i) - \tilde{p}\tilde{s} - p_o (\sum_{i=1}^{N} \tilde{d}_i - \tilde{s}), \lim_{\zeta \to 0} \frac{\partial \tilde{P}_c}{\partial \zeta} > 0, \lim_{\zeta \to 1} \frac{\partial \tilde{P}_c}{\partial \zeta} < 0$
 - social welfare (control performance): $\Phi = \tilde{P}_p + \tilde{P}_c, \frac{\partial \Phi}{\partial \zeta} < 0$

Sensing-Performance Tradeoff
- Tradeoff

- Spectrum sensing reduces communication outage
 - energy cost by spectrum sensing $\varphi(\tau)$: increasing and convex
 - control performance $\bar{\Phi}(\tau)$: degradation incurred by communication outage

- Net revenue
 \[R(\tau) = \bar{\Phi}(\tau) - \kappa \varphi(\tau) \]

- Sensing-performance tradeoff problem
 \[\max_{\tau} R(\tau) \]
 \[\text{s.t. } P_d \geq \bar{P}_d \]
 - tradeoff between control performance and communication cost
 - towards green smart grid
Sensing-Performance Tradeoff
- Tradeoff (cont'd)

- Theorem 1
 - there exists unique optimal sensing time τ^* with the maximum revenue

- Proof

\[
\lim_{\tau \to 0} \frac{\partial R}{\partial \tau} > 0, \quad \lim_{\tau \to +\infty} \frac{\partial R}{\partial \tau} < 0
\]
\[
\frac{\partial^2 R}{\partial \tau^2} < 0
\]

- Solution

\[
\mathcal{L}(\tau, P_d, \lambda) = \Phi(\tau) - \varphi(\tau) + \lambda(P_d - \bar{P}_d)
\]
\[
\frac{\partial \mathcal{L}}{\partial \tau} = \frac{\partial \mathcal{L}}{\partial P_d} = \frac{\partial \mathcal{L}}{\partial \lambda} = 0
\]
Sensing-Performance Tradeoff
- Numerical Results

- Cognitive radio improves communication quality
Sensing-Performance Tradeoff
- Numerical Results (cont’d)

- Communication quality affects control performance

\[s^* = d^* \]
Sensing-Performance Tradeoff
- Numerical Results (cont’d)

- Sensing-performance tradeoff

![Graph showing sensing-performance tradeoff](image)
Sensing-Performance Tradeoff
- Conclusion & Future Work

• **Conclusion**
 - cognitive radio improves communication
 - communication quality affects control performance
 • communication outage reduces provider profit and social welfare
 • however, it may not always decrease consumer profit
 - unique optimal sensing time tradeoff between control performance and communication cost

• **Future work**
 - impact of supply uncertainty on demand response management
 - impact of supply uncertainty and communication unreliability
Thank you!