Fig. 1: Wireless mesh networks with renewable power supplies.
Fig. 2: Illustration of TCGBP.
Fig. 3: Performance comparison for different numbers of users.

Fig. 4: Performance comparison for different user demands.
Fig. 5: Impact of the number of candidate locations.

Fig. 6: Impact of charging capabilities.
Algorithm 1: Two-phase Constrained Green BS Placement algorithm (TCGBP)

\[W \leftarrow \emptyset; \]
\[p^0 \leftarrow \min(P^-); \]
for all \(w \in C \) do
 \[p_v \leftarrow p^0; p_w \leftarrow p^0; \]
 Determine the VP region of BS \(w, VP_w; \)
end for
for all \(v \in VP_w \) do
 Establish link \((v, w)\);
 if QoS and energy constraints can not be met then
 BREAK;
 end if
end for
end for
while All BSs can find no more user to add do
 \(w^* \leftarrow \{w|\max(|S_w|)\}; \)
 for all \(p^-_{w^*} \in P^- \) do
 for all \(v \in V, v \notin VP_{w^*} \) do
 Calculate preference level \(pl_{v,w^*} \);
 end for
 Sort users in increasing order of \(pl_{v,w^*} \);
 for all Sorted \(v \in V, v \notin VP_{w^*} \) do
 Establish link \((v, w^*)\);
 if QoS and energy constraints can not be met then
 BREAK;
 end if
 end for
 Record \((p^-_{w^*}, S_{w^*})\);
end for
Assign power level \(\{p^-_{w^*} | \max(|S_{w^*}|)\} \) to BS \(w^*; \)
Establish and delete links according to \(S_{w^*}; \)
\(W \leftarrow w^*; \)
Delete \(w^* \) from \(C; \)
end while
RETURN \(|W|\);
Algorithm 2 Exhaustive Search

for all BS placements do
 for all combinations of BSs’ power do
 for all combinations of client-BS connections do
 if Energy and traffic constraints can be met then
 Return |W|; {The minimum cost is found}
 end if
 end for
 end for
end for